

Central Queensland Coal Project Appendix 4b – Geotechnical Assessment

Central Queensland Coal

CQC SEIS, Version 3

October 2020

Detailed Geotechnical Assessment and Stability Report

Central Queensland Coal Project

M30863

Prepared for Waratah Coal

25 August 2020

Contact Information

Document Information

Cardno Construction Sciences Pty Ltd

ABN 74 128 806 735

Project Name

Prepared for

Waratah Coal

Central Queensland Coal

Project

2 Progress Drive

Paget QLD 4740

Australia

File Reference Detailed Stability 2020-08-

25.docx

www.cardno.com

Phone +61 7 4952 4750

Job Reference

M30863

2

+61 7 4952 4173 Fax

Date

25 August 2020

Version Number

Author(s):

Aplin

Richard Maurice

Effective Date

25/08/2020

Principal Geotechnical Engineer

Approved By:

Andy Williams

Date Approved

25/08/2020

Senior Principal Engineering Geologist

Document History

Version	Effective Date	Description of Revision	Prepared by	Reviewed by
1	31-7-2020	Draft	Richard Maurice	Andy Williams
2	25-8-2020	Final	Richard Maurice	

Our report is based on information made available by the client. The validity and comprehensiveness of supplied information has not been independently verified and, for the purposes of this report, it is assumed that the information provided to Cardno is both complete and accurate. Whilst, to the best of our knowledge, the information contained in this report is accurate at the date of issue, changes may occur to the site conditions, the site context or the applicable planning framework. This report should not be used after any such changes without consulting the provider of the report or a suitably qualified person.

[©] Cardno. Copyright in the whole and every part of this document belongs to Cardno and may not be used, sold, transferred, copied or reproduced in whole or in part in any manner or form or in or on any media to any person other than by agreement with Cardno.

This document is produced by Cardno solely for the benefit and use by the client in accordance with the terms of the engagement. Cardno does not and shall not assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by any third party on the content of this

Executive Summary

This report presents a study on the feasibility of open cut mining operations on the north eastern side of the Bruce Highway. Measures will be taken to ensure the safety of the road users and to avoid damage to road assets. The study area is located approximately 25 km northwest of Marlborough, Central Queensland.

This report does not constitute a pit design.

Project Details

The proposed development comprises the opening of a pit wall parallel to the highway on the north-eastern side (Pit 2) with a pit wall length of approximately 3.5 km. The maximum depth of the portions of the pit near the highway is approximately 150m.

It is understood that initial mining operations will begin further from the highway from Years 1 to 10 with excavations 500m from the highway and with planned operations adjacent to the highway not proceeding until 2032-2033.

The pit will be backfilled with spoil once the coal has been extracted.

Overburden (surficial soils and weathered rock) will be excavated using standard earthmoving plant with a batter slope of 1H:1V. Rock cuts will be excavated with 45m deep batters and 10m berms with appropriate blasting techniques including pre-splitting and vibration monitoring to reduce disturbance.

Geotechnical Information

Geotechnical information is based on two cored boreholes advanced to full pit depth adjacent to the highway. These holes were logged by a Cardno engineering geologist and sampled extensively for laboratory testing. Additional shallow boreholes were drilled for in situ permeability testing.

A comprehensive laboratory testing programme was carried out to provide rock strength and deformation parameters for slope stability and finite element deformation analysis. Hoek-Brown procedures were used to determine rock strength parameters.

This information was supplemented and compared with earlier strength data derived from coal exploration boreholes and down-hole geophysical testing AMEC (2018).

Geotechnical Analysis Slope Stability

Slope stability analyses were undertaken using GeoStudio software. This software package is preferred by DTMR and availability and expertise with package is a requirement for GE2 and GE3 certification. Two basic slope stability models were constructed using stratigraphy derived from the cored boreholes and down-hole ATV investigation.

The analyses produced the following results using probable lower bound strength values

- > Factors of safety in excess of 1.5 for circular failure surfaces provided that blasting damage is minimised
- > Factors of safety in excess of 1.4 for planar failure surfaces provided that blasting damage is minimised
- > Seismic stability is not critical
- > 3D wedge failures not analysed but not considered plausible; and
- Analyses were done with pore pressure coefficient (Ru) = 0.15 as per DTMR requirements (this is considered to be conservative).

Factors of safety in excess of 1.5 were obtained for all analyses using mean parameters.

Geotechnical Analysis Deformation

Finite element deformation analyses were performed using Plaxis software. This software package is preferred by DTMR and availability and expertise with package is a requirement for GE2 and GE3 certification. Mohr Coulomb modelling was used for overburden and spoil and Hoek-Brown modelling for rock and coal seams.

The analysis showed maximum horizontal and vertical deflections at the highway centreline of 15mm and 5mm respectively for pit edges 100m from the highway with safety berms as per the proposed pit design. These results indicate that horizontal movement and settlement of the highway alignment is not likely to be significant.

Construction Recommendations

Careful attention to blasting techniques including pre-splitting and limitation of peak particle velocities with vibration monitoring will be required.

Pits are to be backfilled immediately following completion of coal extraction.

Slope Monitoring

A slope monitoring programme including instrumentation would be required prior to commencement of excavations. This will most likely include installation of inclinometers. Details on instrumentation and geological mapping procedure during the excavation of pits in order to validate the geological model will be presented in future geotechnical assessments.

Conclusions

The desktop study has shown that excavation of coal mining pits on either side of the highway is feasible without disruption to the highway to a maximum depth of 150m with provision of setback and safety berms. Bi-annual Geotechnical assessments will be presented, starting six months from the commencement of the project operations to ensure that there are no impacts of project blasting on the state-controlled road.

Table of Contents

	Project Details		iii
	Geote	echnical Information	iii
	Geote	echnical Analysis Slope Stability	iii
	Geote	echnical Analysis Deformation	iii
	Const	ruction Recommendations	iv
	Slope	Monitoring	iv
	Concl	usions	iv
1	Introd	uction	9
	1.1	Project Location	9
	1.2	Previous Report	9
	1.3	Current Report	9
2	Pit Co	onfiguration	11
3	Inform	nation Available	14
	3.1	Historical Information	14
	3.2	Current Study	16
4	Geote	echnical Conditions	17
	4.1	Geology	17
	4.2	Material Properties	18
	4.3	Rock Discontinuities	19
	4.4	Statistical Analysis	22
	4.5	Hoek Brown Parameters	24
5	Stabili	ity Analysis	27
	5.1	Introduction	27
	5.2	Two Dimensional Model	27
	5.3	Three Dimensional Modelling	40
	5.4	Discussion and Conclusions	40
6	Deforr	mation Analysis	41
	6.1	Introduction	41
	6.2	Material Properties	41
	6.3	Excavation Sequence	41
	6.4	Results	43
	6.5	Discussion	45
7	Recor	mmendations on Construction	46
8	Limita	ation	47

Appendices

Appendix A	Previous Stability Report	
Appendix B	Historical Borehole Data	
Appendix C	New Borehole data	
Appendix D	Laboratory Test Data	
Appendix E	Accoustic Televiewer Logging	
Appendix F	Hoek Brown Procedure	
Appendix G	Slope Stability Modelling	
Appendix H	Deformation Modelling	

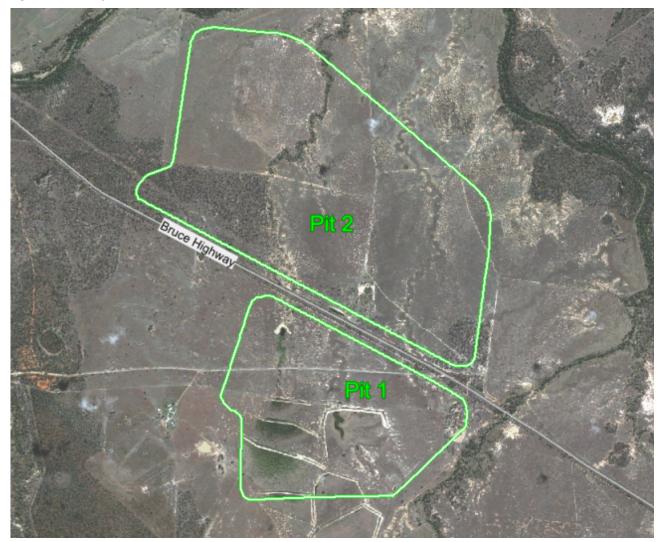
Tables

Table 3-1	Lab Tests Overburden	16
Table 3-2	Lab Tests Rock Core	16
Table 4-1	Overburden Triaxial Test Results	18
Table 4-2	Initial Material Properties	18
Table 4-3	Point Load vs UCS Comparison Mean Values	22
Table 4-4	Derivation of Hoek-Brown Parameters	25
Table 4-5	Recommended Properties Mean Values Good Blasting (Presplit)	26
Table 4-6	Recommended Properties Moderately Conservative Values Good Blasting (Presplit)	26
Table 5-1	2D Cross Sections New Model	27
Table 5-2	2D Cross Sections Old Model	27
Table 5-3	Stability Analysis Summary of Results New Model	29
Table 5-4	FoS Summary	40
Table 6-1	Plaxis Model Sequence	41
Table 6-2	Deformation Points	42
Table 6-3	Calculated Horizontal Deformations (mm) Isostatic Stress Condition	43
Table 6-4	Calculated Vertical Deformations (mm) Isostatic Stress Condition	43
Table 6-5	Calculated Horizontal Deflections (mm) σ_H =1.5 σ_V	43
Table 6-6	Calculated Vertical Deflections (mm) σ_H =1.5 σ_V	44
Table 6-7	Calculated Horizontal Deflections (mm) K0 Automatic	44
Table 6-8	Calculated Vertical Deflections (mm) K ₀ Automatic	44

Figures

Figure 1-1	Project Location	9
Figure 1-2	Borehole Locations	10
Figure 2-1	Site Plan	11
Figure 2-2	Section A-A'	12
Figure 2-3	Section B-B'	12
Figure 2-4	Section C-C'	13
Figure 3-1	Initial Cross Sections	15
Figure 3-2	Cross Section 5 NE (Right) Side	15
Figure 3-3	Cross Section 5 SW (Left) Side	15
Figure 4-1	Schematic section across the Bruce Highway	17
Figure 4-2	Schematic section across the Bruce Highway	17
Figure 4-3	Lower hemisphere plot all discontinuities	19
Figure 4-4	Lower hemisphere plot bedding planes	20
Figure 4-5	Major bedding plane	20
Figure 4-6	Fracture Planes	21
Figure 4-7	Strength vs Depth All Rock Types	23
Figure 4-8	Strength vs Depth Sandstone	23
Figure 4-9	Strength vs Depth Siltstone/Mudstone/Carbonaceous Mudstone	24
Figure 5-1	Typical planar failure surface 150m deep pit	28
Figure 5-2	Failure Surface Section 1a Ru=0.15 150m deep pit	30
Figure 5-3	Failure Surface Section 1a Piez Line 150m deep pit	30
Figure 5-4	Failure Surface Section 1a Seis 150m deep pit	31
Figure 5-5	Failure Surface Section 1b Ru=0.15 150m deep pit	31
Figure 5-6	Failure Surface Section 1b Piez Line 150m deep pit	32
Figure 5-7	Failure Surface Sect 1B Planar Low Level 150m deep pit	32
Figure 5-8	Failure Surface Sect 1B Planar High Level 150m deep pit	33
Figure 5-9	Failure Surface Section 2A Ru=0.15 100m deep pit	33
Figure 5-10	Failure Surface Section 2A Piez Line 100m deep pit	34
Figure 5-11	Failure Surface Sect 2A Planar 150m deep pit	34
Figure 5-12	Failure Surface Section 1B Ru=0.15 150m deep pit	35
Figure 5-13	Failure Surface Section 1B Piez Line 150m deep pit	35
Figure 5-14	Failure Surface Sect 2B Planar	36
Figure 5-15	Failure Surface Sect 1A Lower Bound Good Blasting	37
Figure 5-16	Failure Surface Sect 1C Lower Good Blasting Piez Surface	37
Figure 5-17	Failure Surface Sect 1C Lower Good Blasting Piez Surface Planar	38
Figure 5-18	Partial Pit Fill	38
Figure 5-19	Old Model Section 5 RHS Ru=0.15 150m deep pit	39
Figure 6-1	Plaxis model initial phase and phase 4	41
Figure 6-2	Plaxis model phase 7	41

Figure 6-3	Deformation Points	42
Figure 6-4	Calculated deflections highway centreline	45
Figure 6-5	Calculated deflections pit edge	45



1 Introduction

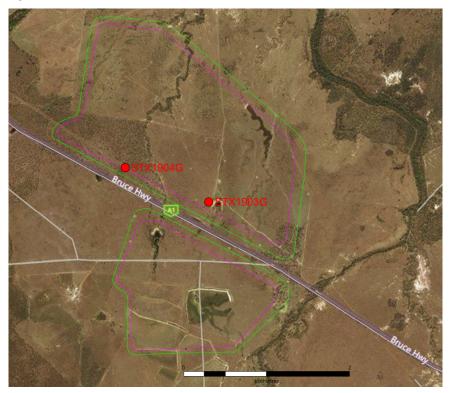
1.1 Project Location

This report presents the results of a report on pit stability and likely ground movements associated with proposed mining works approximately 25km northwest of Marlborough, Central Queensland (Refer Figure 1-1). The proposed works comprise the excavation and backfilling of coal mine pits on either side of the Bruce Highway, however, this report is concerned with pit excavations on the northeast side of the highway only.

Figure 1-1 Project Location

1.2 Previous Report

This report was commissioned based on the recommendations of an earlier Cardno report (Refer Appendix A). The stability and deformation analyses presented in the earlier report were based on geotechnical information was largely derived from coal exploration boreholes which were drilled to determine the spatial distribution and quality of coal seams. Selected boreholes were re-logged to provide geotechnical information and these logs together with geological commentary are presented in Appendix B.


1.3 Current Report

This current report is based on geotechnical strength parameters derived from an extensive laboratory testing programme using samples obtained from two new cored boreholes drilled adjacent to the Highway. Details are provided in Section 4.

The location of the boreholes is shown in Figure 1-2.

Figure 1-2 Borehole Locations

Preliminary details of the pits are provided in Section 2.

The information used in the preparation of this report is summarised in Section 3.

Geotechnical Conditions are described in Section 4.

Slope stability and deformation modelling are described in Sections 5 and 6.

Recommendations on construction sequencing are provided in Section 7.

2 Pit Configuration

The draft pit designs comprise:

- > Box cut in overburden 1H:1V
- > Rock excavation with 0.5H:1V cut slopes and 10m berms at maximum 45 m intervals.

Rock slopes along the road alignment are to be excavated using pre-splitting techniques. The configuration was adopted based on likely available drilling equipment and the requirement to minimise ground disturbance. Slope stability and deformation analyses were performed using geometries based on the concept sketches shown in Figure 2-1 to Figure 2-4.

The following sequence will be followed:

- > Excavate pit 2 on north-east side
- > Maximum length of batter exposed is 200m
- > Immediate backfilling after coal extraction

Figure 2-1 Site Plan

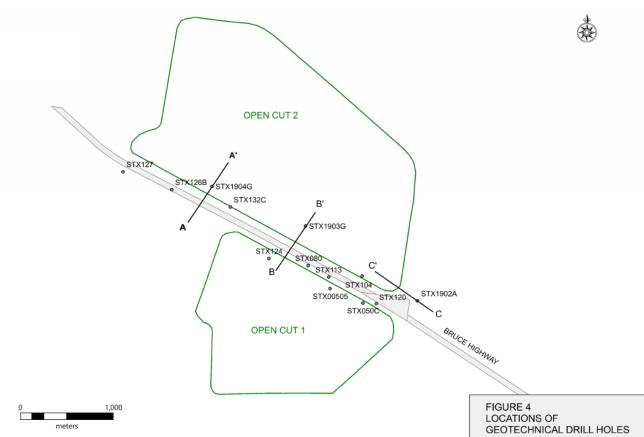


Figure 2-2 Section A-A'

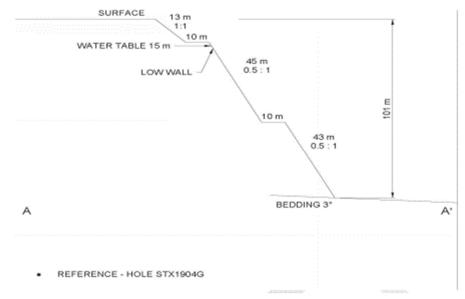


Figure 2-3 Section B-B'

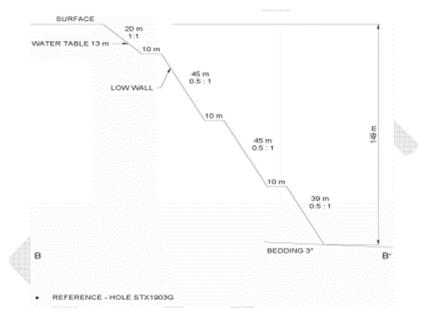
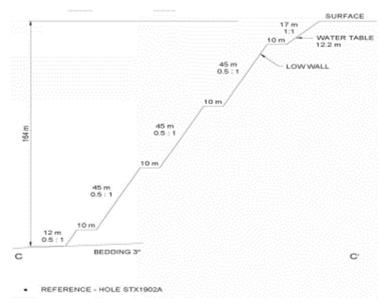



Figure 2-4 Section C-C'

3 Information Available

3.1 Historical Information

3.1.1 Reports

The following reports have been supplied:

- > Geotechnical Assessment of Bruce Highway (AMEC 2018)
- Geotechnical Assessment of Open Cut Mining Adjacent to the Bruce Highway, STYX Project (AMEC 2017 a)
- > Groundwater Investigations for the Styx Trial Pit (AMEC 2014)
- > Geotechnical Report for the Styx Coal Project (AMEC 2017 b)
- Preliminary Investigations for Sediment Dam, Water Storage Dam, Train Loadout and Haul Road, Styx Coal Project (AMEC 2017 c)
- Pits adjacent to Bruce Highway Slope Stability Assessment, Central Queensland Coal Project (Cardno 2018)

3.1.2 Boreholes

A large number of exploration boreholes have been drilled across the project, however these provide limited geotechnical information due to the absence of detailed geotechnical logging and the distance of the boreholes from the highway. A total of 10 boreholes near the highway were re-logged by an engineering geologist; the re-worked logs are presented in AMEC 2018 (Refer Appendix B). Detailed logging of discontinuities was not provided, however some core photos were provided although these do not cover the full cored depth of the boreholes.

Unconfined Compressive strength values derived from downhole sonic velocity logging were provided on some logs.

3.1.3 Pit Cross Section

Pit geometries were provided in three stages:

- 1. Initial sketches provided by AMEC (Refer Figure 2-1)
- 2. Cross Sections with mapped coal layers provided by Central Queensland Coal and AMEC
- 3. Cross Sections with revised coal layers provided by Central Queensland Coal (Refer Figure 3-1)

A total of five cross sections were provided as shown in Figure 3-1. Stability and deformation models were prepared for Cross Section 5 which had the deepest proposed excavation (Refer Figure 3-2 and Figure 3-3).

Figure 3-1 Initial Cross Sections



Figure 3-2 Cross Section 5 NE (Right) Side

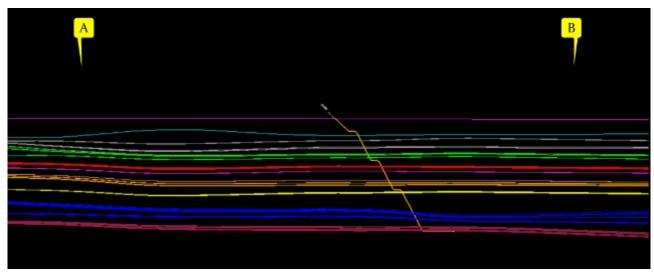
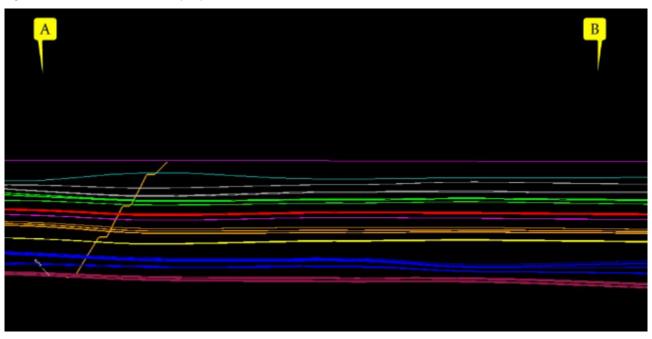



Figure 3-3 Cross Section 5 SW (Left) Side

3.2 Current Study

3.2.1 Geotechnical Boreholes

Two cored boreholes (STX1903G and STX 1904G) were drilled with core logged and sampled by a Cardno engineering geologist in August-September 2019. Detailed borehole logs are presented in Appendix C. These holes were drilled to the bottom of the proposed pit. The depth of the pit floor reduces from 150m at borehole STX1903G to 100m at borehole STX1904G.

Core samples from these boreholes were retrieved for laboratory testing as described in Section 3.2.2.

Two boreholes (STX1901 and STX1902) were drilled for water permeability testing in the overburden and packer tests for the full stratigraphic column.

Detailed borehole logs and core photos are provided in Appendix C.

3.2.2 Laboratory Testing

Laboratory test data is presented in Appendix D and summarised below:

Table 3-1 Lab Tests Overburden

Test Type	No of Tests
CU Triaxial	3

Table 3-2 Lab Tests Rock Core

Test Type	No of Tests
Point Load Axial	110
Point Load Diametral	110
Unconfined Compressive Strength	32
Rock Triaxial	8
Rock Direct Shear	17
Slake Durability	5

3.2.3 Downhole Logging

Downhole Acoustic Televiewer logging (ATV) was performed in borehole STX1904G only. Useable data was not obtained from Borehole STX1903G. Results are presented in Appendix E.

An analysis of the results and recommendations on material parameters is presented in Section 4.

4 Geotechnical Conditions

4.1 Geology

The local geology is described in Appendix B. A summary is presented below.

4.1.1 Introduction

The Central Queensland Coal Project lies within the Styx Coal Measures. Unconsolidated overburden comprises soil, colluvium and Tertiary Clay. Depth of weathering adjacent to the Bruce Highway ranges from 11.86 m to 28.50 m.

4.1.2 Geological Setting

The Project area is in the Styx Basin, a small, Early Cretaceous, intracratonic sag basin which covers an area of about 300 km2 onshore and 500 km2 offshore. The coal bearing strata are known as the Styx Coal Measures and consist of quartzose, calcareous, lithic and pebbly conglomerate, sandstone, siltstone, mudstone, carbonaceous shale and coal seams. Figure 4-1 shows the typical coal seams stratigraphy. The depositional environment was freshwater, deltaic to paludal, with occasional marine incursions.

The Styx Coal Measures occur as basin infill in a half graben geometry which has a plunge to the north. The deposit has north and east dipping components.

The full sequence of coal is about 6 m occurring within a sequence of about 120 m of coal bearing strata. Typical sections across the Bruce Highway showing the mining area are shown in Figure 4-1 and Figure 4-2.

Figure 4-1 Schematic section across the Bruce Highway

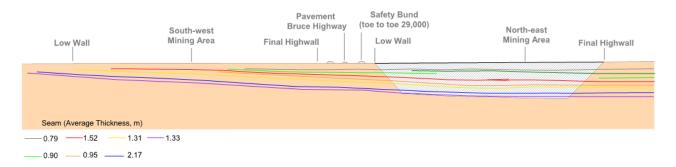
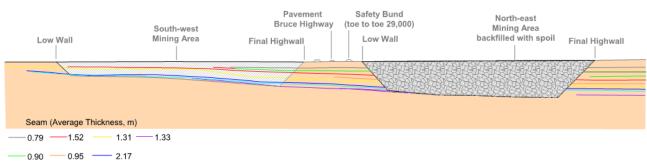



Figure 4-2 Schematic section across the Bruce Highway

4.1.3 Stratigraphy

The Styx Coal Measures comprise multiple coal seams which are generally interbedded with sandstone, siltstone and mudstone. Bedding thickness varies. Partings are present along bedding planes. Lensing of coal seams also occurs.

Multi-seam mining will be required with parting operations which minimise dilution.

4.1.4 Geological Structure

Bedding is generally uniform with an average dip of 3°. Maximum dip is about 7°. Partings occur along bedding planes. Jointing is generally widely spaced.

To date no significant faults or dykes have been encountered during geological investigations.

4.2 Material Properties

4.2.1 Overburden

Three CU triaxial tests were performed on the overburden material, results are summarised in Table 4-1.

Table 4-1 Overburden Triaxial Test Results

Borehole and Depth	c' (kPa)	Ф' (Degrees)
STX1903 11.48-11.63m	45	24
STX1904 2.27-2.37m	35	18
STX1904 3.70-3.89	52	18

Because of the drilling process, the ability to retrieve undisturbed sample suitable for testing was limited. The test results for the deeper sample are broadly in line with the values used in the previous study, ie:

 $c'=40 \text{ kPa}, \Phi' = 25^{\circ}$

These values have been used in the slope stability analysis.

4.2.2 Spoil

No test data is available, the following strength values have been assumed:

c'=0 kPa. $\Phi' = 34^{\circ}$

Spoil will be used to construct safety bunds and for backfilling of the pits. These applications are not critical.

4.2.3 Rock

Initial rock strength parameters were supplied by AMEC (2018) and are summarised in below. These parameters were used in the initial stability model

Table 4-2 Initial Material Properties

Material	Density (kN/m3)	Angle of Internal Friction φ (degrees)	Cohesion (kPa)
Overburden (clay and XW rock)	19.6	25	40
Spoil	18.6	34	0
Mudstone XW	18.6	24	60
Mudstone MW	18.6	25	200
Mudstone Fr	19.6	38	200
Siltstone CW	24.5	43	60
Shale Fr Competent	24.5	15	38 400
Sandstone HW	19.6	38	60
Sandstone Fr Weak	24.5	40	200
Sandstone Fr, Competent	24.5	28	27 200
Coal Fr	14.7	35.5	420
Coal XW	11.8	22	0
Soot	11.8	9	0
Intraformational Shear Zone	-	25	9

Revised parameters were prepared using Hoek-Brown procedures using core logs, laboratory tests and ATV tests as described in the following sections. The Hoek-Brown model takes into account both intact rock strength and the strength and nature of discontinuities including bedding planes joints and shear zones. Mean and moderately conservative strength parameters were derived and are summarised in Section 4.5.2.

4.3 Rock Discontinuities

4.3.1 All Discontinuities

Downhole Acoustic Televiewer logging (ATV) was performed in borehole STX1904G. The results are presented in Appendix E. The following discontinuity types were logged

> Bedding Planes (26 No)> Fractures (166 No)> Intrusions (3 No)

A lower hemisphere contour plot of all discontinuities is presented in Figure 4-3.

4.3.2 Bedding Planes

Figure 4-4 shows a contour plot of all bedding planes. The highest concentration of bedding planes equates to a pole with trend/plunge of 185/83 (dip 7°, dip direction 005°) (Refer Figure 4-5).

For two dimensional planar failure an apparent dip of 5° out of the RHS face is recommended. This corresponds approximately with stratigraphy based on coal exploration boreholes.

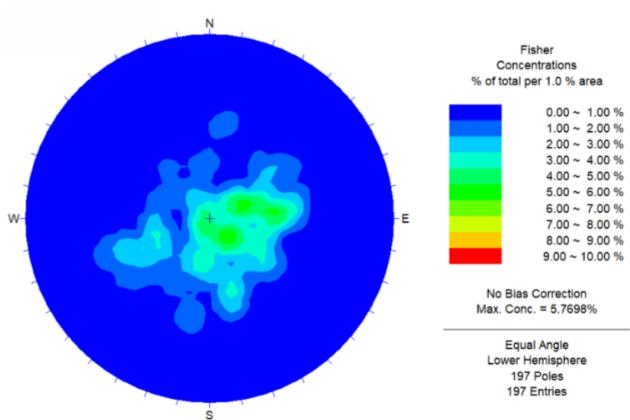


Figure 4-3 Lower hemisphere plot all discontinuities

Figure 4-4 Lower hemisphere plot bedding planes

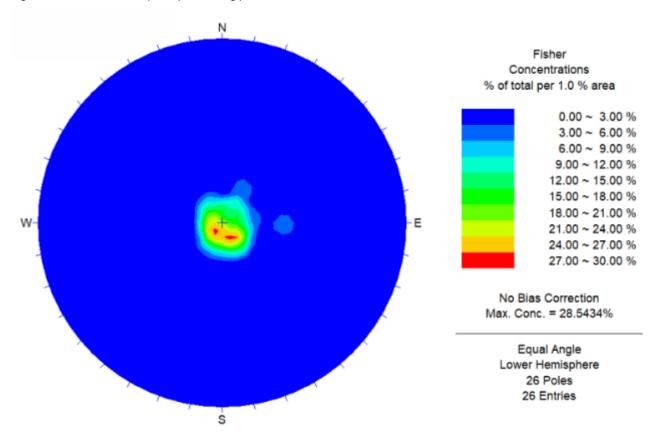
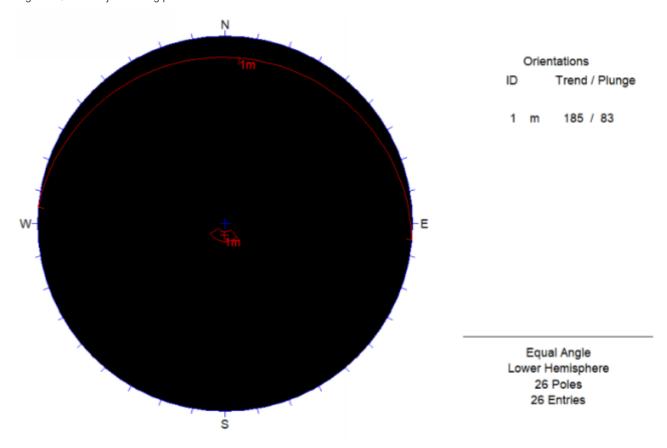
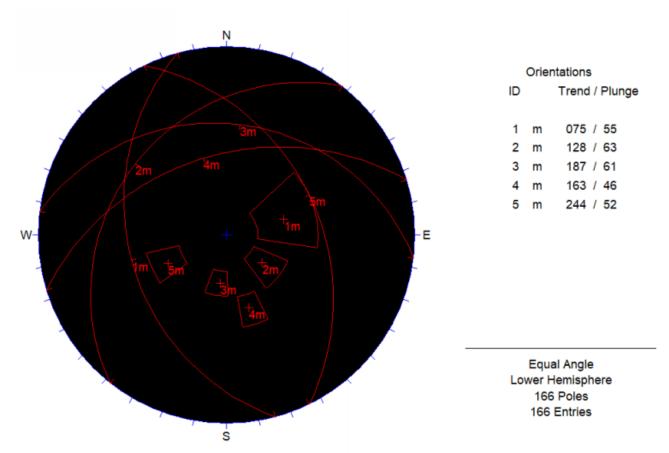



Figure 4-5 Major bedding plane



4.3.3 Fractures/Joints

A total of five major discontinuity sets were identified as shown in Figure 4-6. Dips range from 27° to 44°. Joints in these formations are known to be widely spaced and discontinuous between beds, the formation of significant wedge failures is considered to be infeasible. Refer Section 5.3.

Strengths measured on bedding planes and joints using direct shear tests have been used to determine appropriate Hoek-Brown rock mass strength parameters for use in 2D modelling.

4.3.4 Shear Zones

Discontinuities with large aperture spacing were logged at depths of 58.38m and 58.74m at shallow dip angles. These correlate with a fault/shear zone identified in the core log and core photographs. This has been incorporated in planar failure models (refer Section 5.2.2).

4.3.5 Intrusions

Three items were identified as intrusions. No igneous intrusions were noted on the logs, however at one location thermal alteration was noted.

4.4 Statistical Analysis

4.4.1 Point Load and UCS Tests

Unconfined compressive strength (UCS) testing provides an accurate determination of the strength of the undisturbed rock mass, point load tests provide a useful strength estimate at lower cost, however the correlation between Point Load and UCS tests must be established for each rock type and geological environment.

Comparisons were performed between adjacent UCS and point load tests on the same rock type; results are summarised in Table 4-3.

Table 4-3 Point Load vs UCS Comparison Mean Values

Rock Type	UCS/Point Load Axial ¹	UCS/Point Load Diametral ²
All	15.2	30.8
Sandstone	17.7	22.2
Siltstone	12.2	47.9
Carbonaceous Sandstone/Siltstone	10.9	28.2

The diametral tests showed highly variable results and many of the samples split along bedding planes. The diametral test results are not considered representative of the intact rock strength.

4.4.2 Strength vs Depth

Measured strength values were plotted against depth for all rock types (Figure 4-7), for sandstone (Figure 4-8) and siltstone/mudstone (Figure 4-9).

There is a very weak correlation with depth, however this is not considered statistically significant and has not been included in the strength models used for the stability analysis.

There was no obvious correlation between rock triaxial and direct shear results with depth.

¹ Values less than 5 and greater than 50 excluded

² Values greater than 100 excluded

Figure 4-7 Strength vs Depth All Rock Types

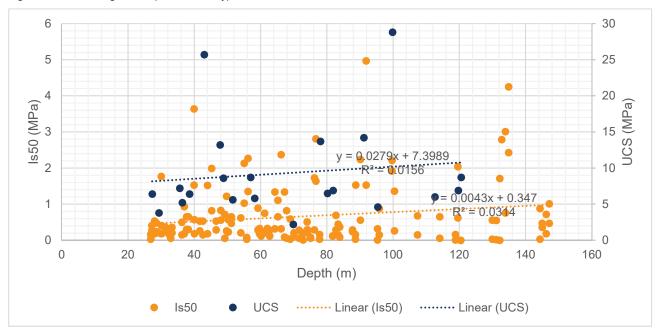
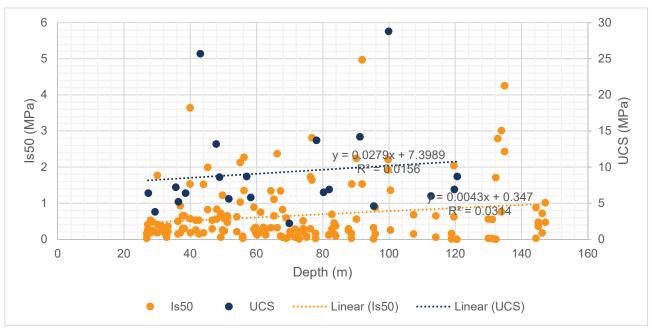



Figure 4-8 Strength vs Depth Sandstone

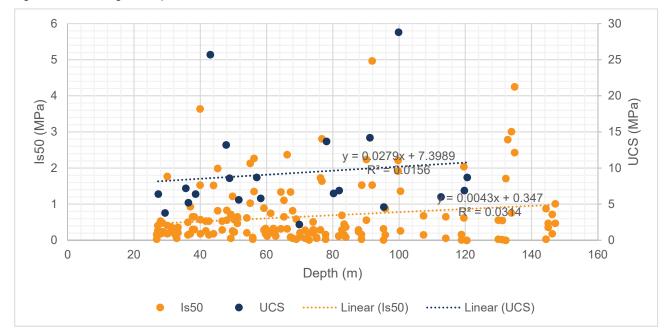


Figure 4-9 Strength vs Depth Siltstone/Mudstone/Carbonaceous Mudstone

4.5 Hoek Brown Parameters

4.5.1 Introduction

Slope stability and deformation modelling was undertaken using Hoek-Brown strength parameters as described in Appendix F.

The basic Hoek-Brown parameters were determined as described in Table 4-4.

Table 4-4 Derivation of Hoek-Brown Parameters

Parameter	Derived
σ _{ci} (UCS)	From UCS, Point Load and Triaxial Tests using RocLab
mi	From Triaxial Tests using RocLab
GSI Geotechnical Strength Index	Hoek Brown procedures based on RQD from logs and joint conditions from shear box tests and visual observations
D Disturbance Factor	Assume 0.7 based on presplitting and blast monitoring

4.5.2 RocLab Lab Analysis

Roclab software was used to determine Hoek-Brown parameters using mean and lower-bound values for RQD and J_{cond89} (Refer Appendix F). Equivalent Mohr-Coulomb parameters were derived assuming a cut depth of 150m. Mohr Coulomb parameters are required for the Geostudio analysis.

The use of mean strength values is considered appropriate as the critical failure surfaces are steep and cut across multiple flat dipping beds. Recommended parameters for analysis are provided in Table 4-5 and, Table 4-6.

Table 4-5 Recommended Properties Mean Values Good Blasting (Presplit)

Material Type	Sigci (MPa)	mi	RQD (%)	JCond89 ³	GSI	D	C (kPa)⁴	Φ (degrees)	Em (MPa)
Sandstone	13.9	41.5	98	25	86.5	0.7	1470	52.1	19800
Siltstone	8.8	29.2	99	20	79.5	0.7	795	44.9	10260
Carbonaceous	6.5	50	99	10	64.5	0.7	720	38.7	3840
Coal	6.25	10	99	10	64.5	0.7	410	25.4	3740

Table 4-6 Recommended Properties Moderately Conservative Values Good Blasting (Presplit)

Material Type	Sigci (MPa)	mi	RQD (%)	JCond89	GSI	D	C (kPa)	Φ (degrees)	Em (MPa)
Sandstone	3.9	41.5	80	20	70	0.7	1000	45.4	7660
Siltstone	8.8	29.2	80	20	70	0.7	660	40.8	6110
Carbonaceous	6.5	50	80	10	55	0.7	590	34.5	2220
Coal	5	10	70	10	50	0.7	285	19.8	1625

4.5.3 Discussion

RQD values from corelogs were consistently high; this was reflected in the high strength values derived using Hoek Brown procedures.

³ Refer Appendix F

 $^{^4}$ C and $\dot{\Phi}$ equivalent Mohr Coulomb parameters for 150m high slope

5 Stability Analysis

5.1 Introduction

Slope stability analyses were carried out using GeoStudio software. Pore pressure conditions were determined as follows:

- > Phreatic lines based on earlier drawdown studies
- > Minimum Ru 0.15

Effective cohesion and friction angles c', Φ ' were derived from the Hoek-Brown parameters using RocLab software. This was necessary as GeoStudio does not include a Hoek Brown model which uses a curved failure envelope. Cohesion and friction angle values were derived based on a 150m deep cut slope.

The effect of intraformational shear zones was modelled using a combined circular/planar failure surface as described in Section 5.2.2.

5.2 Two Dimensional Model

Two dimensional slope stability analyses were performed using Geostudio software. Cross sections modelled are described in 5.2.2.

5.2.1 Sections Modelled

Table 5-1 2D Cross Sections New Model

Section	Location/Geometry	Model Type
1A	150m deep pit at Borehole STX1903G Flat Bedding	Morgenstern and Price Circular
1B	As above adverse bedding dip	Morgenstern and Price Circular
1C	As above with nominal coal bed and shear zone.	Morgenstern and Price Circular plus planar failure on shear zone
2A	100m deep pit at Borehole STX1904G Flat Bedding	Morgenstern and Price Circular
2B	100m deep pit at Borehole STX1904G Adverse Bedding	Morgenstern and Price Circular plus planar failure on shear zone

Table 5-2 2D Cross Sections Old Model

Section	Location/Geometry	Model Type
Section 5	150m deep pit RHS	Morgenstern and Price Circular
Section 5	150 m deep pit LHS	Morgenstern and Price Circular

5.2.2 Planar Failures

Geostudio allows analysis of a combined failure surface comprising a circular surface cutting across beds intersecting a pre-defined planar surface. A typical example is shown in Figure 5-1.

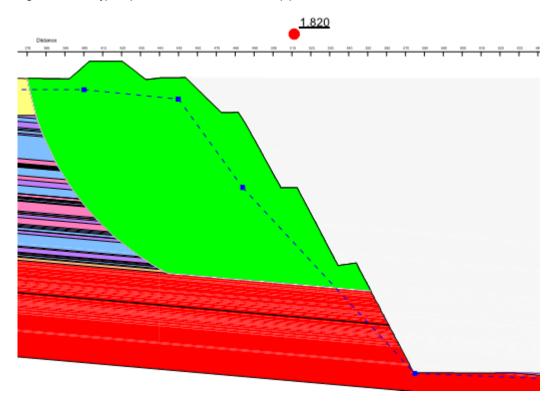


Figure 5-1 Typical planar failure surface 150m deep pit

5.2.3 Results of Analysis

The results of the analysis are presented in Table 5-3.

For comparative purposes a limited number of stability checks were undertaken using stratigraphy from the previous study. These results are also presented in Table 5-3. The failure surfaces are illustrated in Figure 5-2 to Figure 5-19.

Further load cases can be analysed if required.

Table 5-3 Stability Analysis Summary of Results New Model

Run	File	Section	Pit Depth	Parameters	Blasting	Case	FOS	Ref Figure	Comments
1	STX1903V6MeanProps	1A	150	Mean	Good D=0.7	Ru=0.15	2.52	Figure 5-2	
2	STX1903V6MeanProps	1A	150	Mean	Good D=0.7	Piez Surf	2.21	Figure 5-3	
3	STX1903V6MeanProps	1A	150	Mean	Good D=0.7	Piez+Seis	2.00	Figure 5-4	Pseudo Static 0.08g
4	STX1903V7MeanProps	1B	150	Mean	Good D=0.7	Ru=0.15	2.63	Figure 5-5	
5	STX1903V7MeanProps	1B	150	Mean	Good D=0.7	Piez Surf	2.29	Figure 5-6	
6	STX1903V7MeanPropsPlanar	1C	150	Mean	Good D=0.7	Piez Surf	1.82	Figure 5-8	Planar Failure High Level
7	STX1904V5MeanProps	2A	100	Mean	Good D=0.7	Ru=0.15	3.67	Figure 5-9	
8	STX1904V5MeanProps	2A	100	Mean	Good D=0.7	Piez Surf	3.41	Figure 5-10	
9	STX1904V5MeanProps	2A	100	Mean	Good D=0.7	Piez Surf	3.18	Figure 5-11	Planar Failure
10	STX1903V7MeanPropsPlanar	1B	150	Mean	Good D=0.7	Ru=0.15	2.63	Figure 5-12	
11	STX1903V7MeanPropsPlanar	1B	150	Mean	Good D=0.7	Piez Surf	2.29	Figure 5-13	
12	STX1903V7MeanPropsPlanar	1B	150	Mean	Good D=0.7	Piez Surf	1.73	Figure 5-14	Planar Failure
13	STX1903V6LowProps Good Blasting	1A	150	Lower	Good D=0.7	Piez Surf	1.73	Figure 5-15	
14	STX1903V7LowPropsGoodBlasting	1C	150	Lower	Good D=0.7	Piez Surf	1.79	Figure 5-16	
15	STX1903V7LowPropsGoodBlasting	1C	150	Lower	Good D=0.7	Piez Surf	1.46	Figure 5-17	Planar failure
16	STX1903V7LowPropsGoodBlasting	1C	150	Lower	Good D=0.7	Piez Surf	2.64	Figure 5-18	As above partial pit fill
17	CQCoalSect5d2020a	5	150	Mean	Good D=0.7	Ru=0.15	2.44	Figure 5-19	

Figure 5-2 Failure Surface Section 1a Ru=0.15 150m deep pit

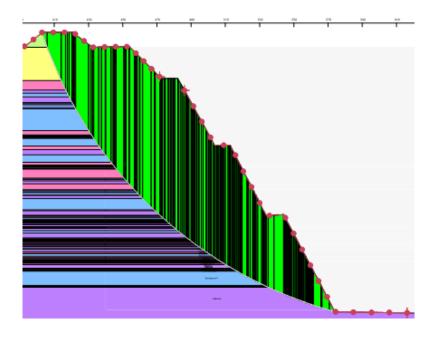


Figure 5-3 Failure Surface Section 1a Piez Line 150m deep pit

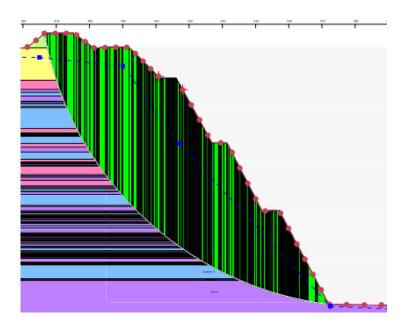


Figure 5-4 Failure Surface Section 1a Seis 150m deep pit

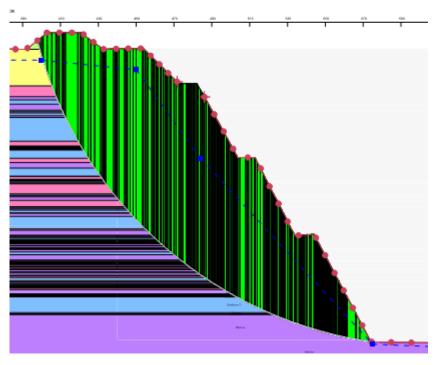


Figure 5-5 Failure Surface Section 1b Ru=0.15 150m deep pit

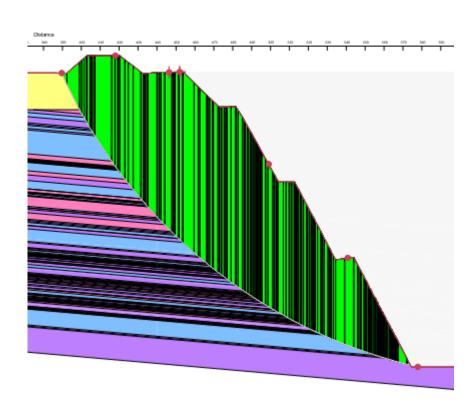


Figure 5-6 Failure Surface Section 1b Piez Line 150m deep pit

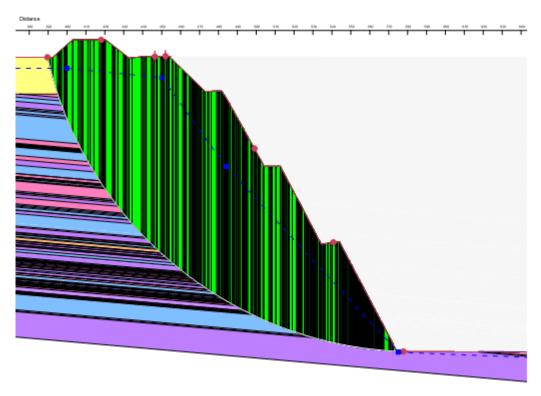


Figure 5-7 Failure Surface Sect 1B Planar Low Level 150m deep pit

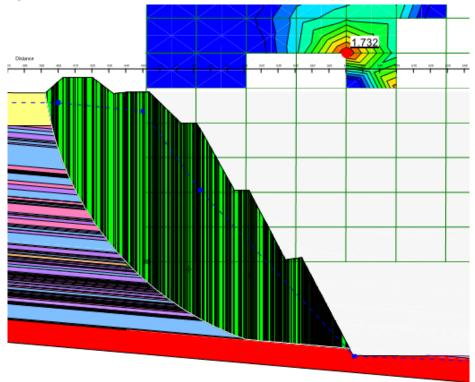


Figure 5-8 Failure Surface Sect 1B Planar High Level 150m deep pit

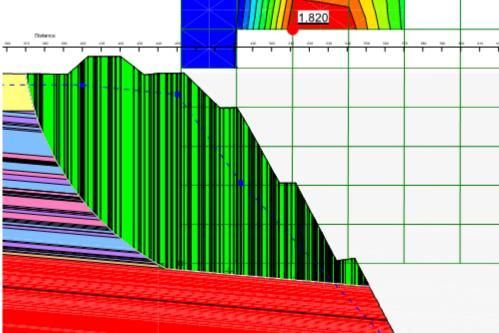


Figure 5-9 Failure Surface Section 2A Ru=0.15 100m deep pit

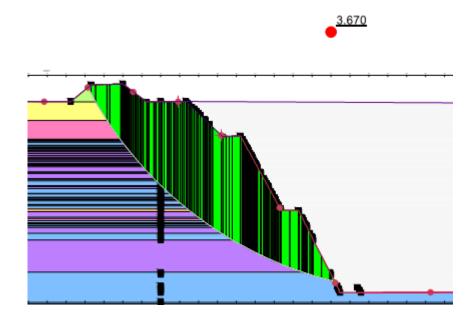


Figure 5-10 Failure Surface Section 2A Piez Line 100m deep pit

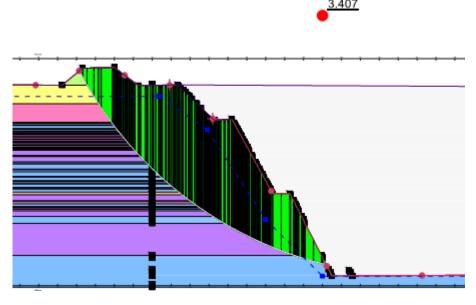


Figure 5-11 Failure Surface Sect 2A Planar 150m deep pit

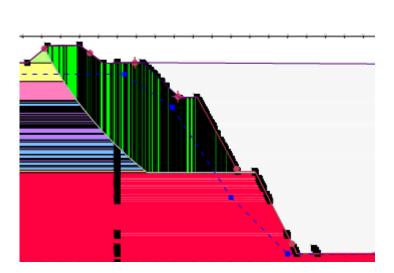


Figure 5-12 Failure Surface Section 1B Ru=0.15 150m deep pit

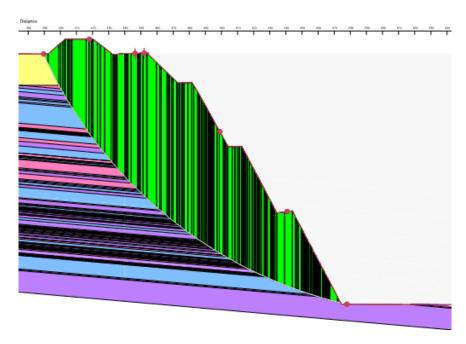


Figure 5-13 Failure Surface Section 1B Piez Line 150m deep pit

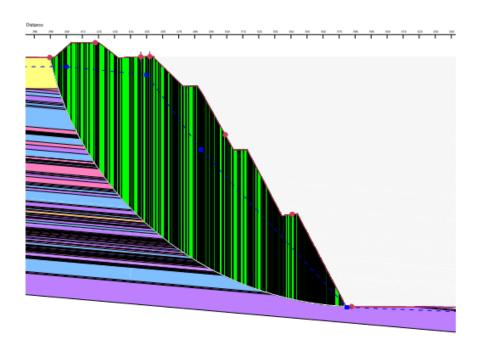


Figure 5-14 Failure Surface Sect 2B Planar

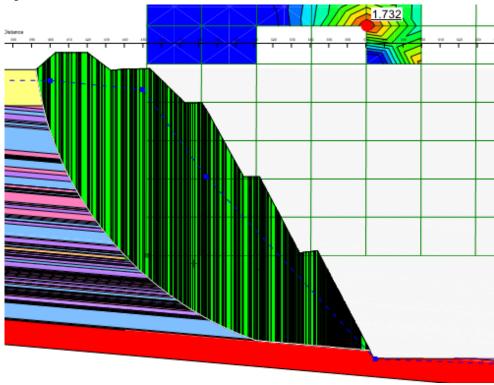


Figure 5-15 Failure Surface Sect 1A Lower Bound Good Blasting

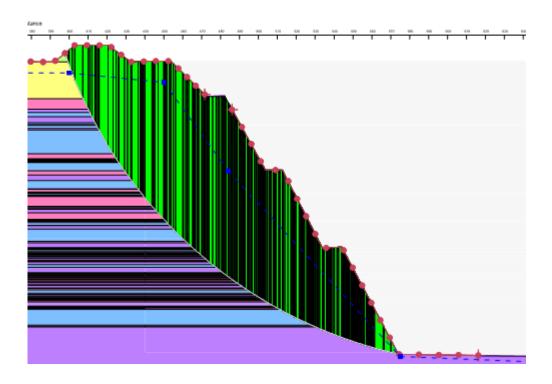


Figure 5-16 Failure Surface Sect 1C Lower Good Blasting Piez Surface

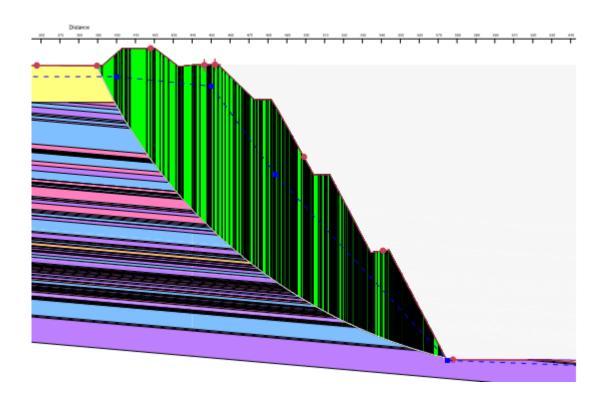


Figure 5-17 Failure Surface Sect 1C Lower Good Blasting Piez Surface Planar

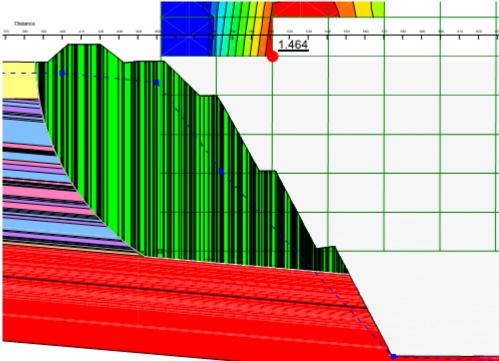


Figure 5-18 Partial Pit Fill

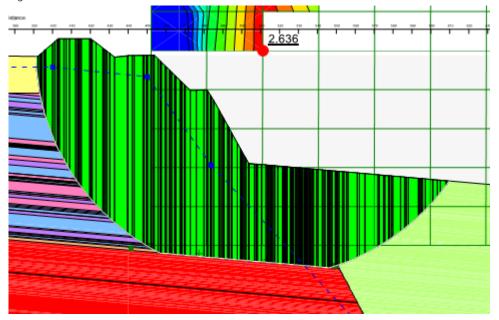
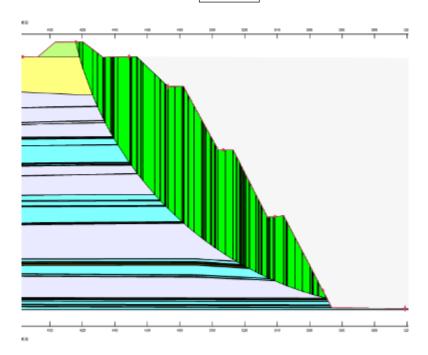



Figure 5-19 Old Model Section 5 RHS Ru=0.15 150m deep pit

2.438

5.3 Three Dimensional Modelling

An ATV survey was undertaken in borehole STX1904G and a number of discontinuity sets were identified in addition to the flat dipping bedding. Some combinations of discontinuities do produce wedges where failure is kinematically possible, however as the joints are known to be discontinuous across beds, 3D wedge stability analyses have not been undertaken.

2D planar failure has been considered as described in Section 5.2.2. This approach is believed to be conservative.

5.4 Discussion and Conclusions

5.4.1 Required Factor of Safety

Minimum acceptable factors of safety for cut slopes are specified in the current DTMR Geotechnical Design Standards (DTMR 2020) as follows:

Short Term (During Construction) 1.30
 Long Term (In Service) 1.50
 Seismic Loading 1.10

In service analyses are required to be undertaken with a representative ground condition and as a minimum a pore pressure coefficient of 0.15 shall be used.

A minimum FoS of 1.3 is typically used for the design of mine pit slopes. Slope behaviour for a variety of different strength models is discussed in the sections below.

5.4.2 Sensitivity to Material Properties and Failure Mechanism

Table 5-4 shows a summary of lowest factors of safety for combinations of pit geometry and material properties. The following conclusions may be made from these results.

- Acceptable factors of safety for short term conditions (FoS 1.3) are obtained for pit depths of up to 150m and with adverse bedding plane dip.
- > Acceptable factors of safety are obtained using moderately conservative strength parameters
- > Acceptable factors of safety are obtained for seismic conditions based on pseudo static analysis at 0.08g

Table 5-4 FoS Summary

Pit Depth (m)	Material Properties	Blasting	Bedding	Case	Failure	FoS	Required FOS	Comments
150 ⁵	Mean	Good	Flat	Short Term	Circular	2.21	1.3	Acceptable
150	Mean	Good	Flat	Seismic	Circular	2.00	1.1	Acceptable
150	Mean	Good	Adverse	Short Term	Circular	2.29	1.3	Acceptable
150	Mean	Good	Adverse	Short Term	2D Planar	1.82	1.3	Acceptable
150	Lower	Good	Flat	Short Term	Circular	1.73	1.3	Acceptable
150	Lower	Good	Adverse	Short Term	2D Planar	1.46	1.3	FoS 2.64 with pit fill to 2 nd bench
100	Mean	Good	Flat	Short Term	Circular	3.41	1.3	Acceptable
100	Mean	Good	Flat	Short Term	2D Planar	3.18	1.3	Acceptable

⁵ Based on Borehole STX1903A

6 Deformation Analysis

6.1 Introduction

Deformation modelling was undertaken using PLAXIS 2D software. The cross section geometry was identical to the geometry used to develop the slope stability model described in Section 5.2.

6.2 Material Properties

The following material models were used:

> Spoil and Overburden Mohr Coulomb Model> Rock and Coal Mohr Coulomb Model

The material properties used are summarised in Table 4-5.

6.3 Excavation Sequence

Table 6-1 Plaxis Model Sequence

_	<u>'</u>	
Phase	Description	Comments
Initial Phase	Initial Conditions	No construction
Phase 1	Construct Safety Bunds	
Phase 2	Excavate to 2 nd bench RHS	Deformations reset to zero after bund construction
Phase 3	Excavate to 3 rd bench RHS	
Phase 4	Excavate to full depth (150m) RHS	
Phase 5	Fill to 3 rd bench	
Phase 6	Fill to 2 nd bench	
Phase 7	Fill to original ground surface	

Figure 6-1 Plaxis model initial phase and phase 4

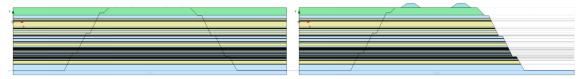
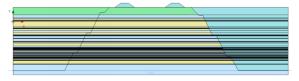



Figure 6-2 Plaxis model phase 7

Deformations were output for points as described in Table 6-2 and Figure 6-3.

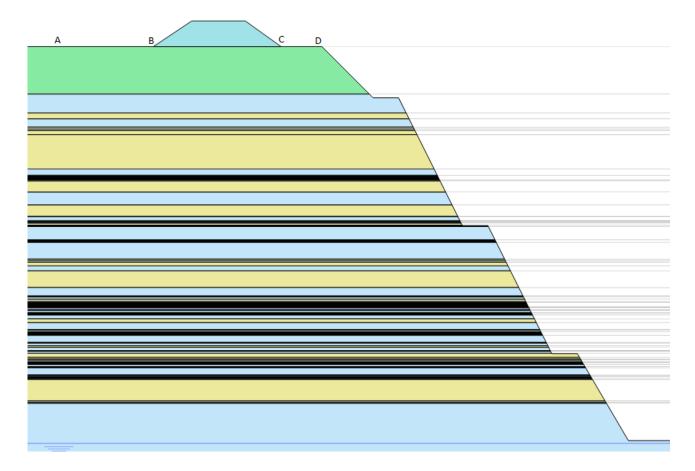

Additional deformation information including deformed mesh, deformation contours etc. is available from the Plaxis model but has not been presented here. It is understood that the primary concern is horizontal and vertical movement at the highway alignment.

Table 6-2 Deformation Points

Point Number	Node No	Location
Α	15952	Road centreline
В	14071	Bund inside edge
С	11031	Bund outside edge
D	8293	Edge of pit

Figure 6-3 Deformation Points

6.4 Results

Calculated deformations are presented in Table 6-3 to Table 6-8. Analyses were prepared for the following in-situ stress conditions:

- > Isostatic (K₀ = 1.0)
- > Anisotropic ($K_0 = 1.5$) (Stress conditions are believed to be isotropic for depths less than 150m).
- > K₀ determined automatically by Plaxis

Calculated deflection at the highway centreline and RHS pit edge are summarised in Figure 6-4 and Figure 6-5.

Table 6-3 Calculated Horizontal Deformations (mm) Isostatic Stress Condition

	Α	В	С	D
Phase 1	0.0	-1.6	1.5	1.5
Phase 2	1.6	1.5	1.6	1.6
Phase 3	6.2	6.9	7.7	7.7
Phase 4	7.8	8.8	10.0	10.0
Phase 5	7.8	8.8	10.0	10.0
Phase 6	7.7	8.9	10.5	10.5
Phase 7	6.9	9.1	13.1	13.1

Table 6-4 Calculated Vertical Deformations (mm) Isostatic Stress Condition

	Α	В	С	D
Phase 1	-0.6	-2.1	-2.1	-0.3
Phase 2	0.3	1.1	3.3	5.8
Phase 3	-0.5	0.0	1.8	4.3
Phase 4	-0.9	-0.6	0.9	3.4
Phase 5	-0.9	-0.6	0.9	3.3
Phase 6	-0.8	-0.6	0.6	2.9
Phase 7	-0.8	-1.3	-3.2	-4.3

Table 6-5 Calculated Horizontal Deflections (mm) σ_H =1.5 σ_V

	Α	В	С	D
Phase 1	0.0	-1.6	1.5	1.0
Phase 2	3.6	4.1	5.3	5.2
Phase 3	12.2	14.8	18.2	18.3
Phase 4	14.8	18.6	23.1	23.5
Phase 5	14.8	18.6	23.2	23.5
Phase 6	14.7	18.6	23.6	24.1
Phase 7	13.8	18.7	26.0	29.8

Table 6-6 Calculated Vertical Deflections (mm) σ_H =1.5 σ_V

	Α	В	С	D
Phase 1	-0.6	-2.1	-2.1	-0.3
Phase 2	0.3	1.0	2.9	5.2
Phase 3	-1.2	-1.3	-0.8	1.4
Phase 4	-1.8	-2.3	-2.6	-0.5
Phase 5	-1.8	-2.3	-2.6	-0.5
Phase 6	-1.7	-2.2	-2.8	-0.8
Phase 7	-1.7	-2.8	-6.4	-8.0

Table 6-7 Calculated Horizontal Deflections (mm) K0 Automatic

	Α	В	С	D
Phase 1	0.0	-1.6	1.5	1.0
Phase 2	-1.1	-2.2	-3.4	-4.0
Phase 3	-0.7	-1.8	-3.1	-3.7
Phase 4	-0.5	-1.5	-2.8	-3.4
Phase 5	-0.5	-1.5	-2.8	-3.4
Phase 6	-0.5	-1.4	-2.4	-3.0
Phase 7	-1.2	-1.1	0.2	1.7

Table 6-8 Calculated Vertical Deflections (mm) K_0 Automatic

	Α	В	С	D
Phase 1	-0.6	-2.1	-2.1	-0.3
Phase 2	0.3	1.1	3.7	6.4
Phase 3	0.2	1.1	3.8	6.6
Phase 4	0.1	1.0	3.7	6.5
Phase 5	0.1	1.0	3.7	6.5
Phase 6	0.2	1.0	3.4	6.1
Phase 7	0.3	0.2	-0.4	-1.2

Figure 6-4 Calculated deflections highway centreline

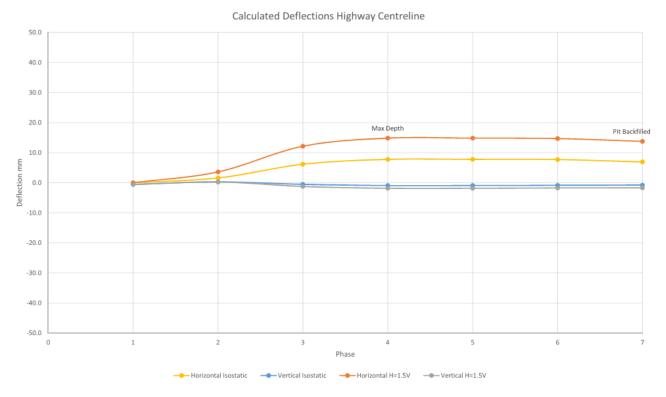
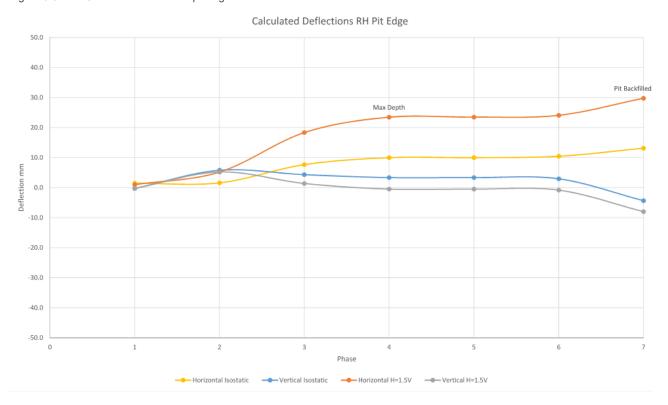



Figure 6-5 Calculated deflections pit edge

6.5 Discussion

Maximum calculated horizontal and vertical deflections at the highway centreline are less than 15mm and 5mm respectively. Maximum calculated horizontal deflection at the pit edge is approximately 30mm. These calculated values are similar to those obtained in the previous study.

Deflections at the highway centreline show very little change on backfilling of the pit.

7 Recommendations on Construction

The following recommendations are understood to be part of the mine development plan.

- Excavation of highwalls adjacent to the highway will not proceed until excavations at a minimum distance of 500m from the highway have been successfully undertaken and the slopes examined and mapped as necessary.
- > Geological model to be revised as necessary based on further exploration drilling and mapping as above.
- > Highwalls to be excavated using pre-splitting and with appropriate vibration monitoring at all blasts.
- > Pits adjacent to the highway be progressively backfilled following coal extraction.
- > Pits on both sides of the highway not to be concurrently open.
- Appropriate deformation monitoring systems and inspection regimes to be in place before and during mining operations.
- > Appropriate safety measures to be enforced during blasting operations.
- > Minimum distances and safety bunds to be maintained.

8 Limitation

Geotechnical and environmental services are provided by Cardno (QLD) Pty Ltd in accordance with generally accepted professional engineering and geologic practice in the area where these services are rendered. The client acknowledges that the present standard in the engineering, geologic and environmental profession does not include a guarantee of perfection, and no other warranty, expressed or implied, is extended by Cardno.

It is the reader's responsibility to verify the correct interpretation and intention of the recommendations presented herein. Cardno assumes no responsibility for misunderstandings or improper interpretations that result in unsatisfactory or unsafe work products. It is the reader's further responsibility to acquire copies of any supplemental reports, addenda or responses to public agency reviews that may supersede recommendations in this report.

The findings presented in this report have been based on the investigation described herein. It is unlikely that the measurements and values obtained from sampling and testing during this investigation will represent the extremes of conditions that may exist within the site. Hence, if any ground conditions different to those described in this report are encountered, further advice should be immediately sought from Cardno.

It is recommended that Cardno be commissioned to provide a review of any design and documentation to confirm that the intents of this report are properly reflected in this design.

This report has been prepared specifically for Waratah Coal Pty Ltd. Information contained in this report should not be construed as appropriate for other purposes or other users.

APPENDIX

A

PREVIOUS STABILITY REPORT

Pits Adjacent to Bruce Highway - Slope Stability Assessment

Central Queensland Coal Project

M30133

Prepared for Central Queensland Coal

10 May 2018

Contact Information

Fortitude Valley QLD 4006

Document Information

Cardno (Qld) Pty Ltd Prepared for Central Queensland Coal

ABN 57 051 074 992

Project Name Central Queensland Coal

Project

515 St Paul's Terrace File Reference M30133.0 Draft

Report1c.docx

Australia

Job Reference M30133

www.cardno.com

Phone +61 7 3369 9822 Date 10 May 2018

Fax +61 7 3369 9722 Version Number 2

Author(s):

Level 11

Richard Maurice Effective Date 11/05/2018

Senior Geotechnical Engineer

Approved By:

Andrew Williams Date Approved 11/05/2018

Senior Principal Engineering Geologist

Document History

Version	Effective Date	Description of Revision	Prepared by	Reviewed by
001	02/05/2018	Draft for Client Review	RM	AW
002	11/05/2018	Final	RM	AW

This document is produced by Cardno solely for the benefit and use by the client in accordance with the terms of the engagement. Cardno does not and shall not assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by any third party on the content of this document.

[©] Cardno. Copyright in the whole and every part of this document belongs to Cardno and may not be used, sold, transferred, copied or reproduced in whole or in part in any manner or form or in or on any media to any person other than by agreement with Cardno.

Executive Summary

This report presents a desktop study on the feasibility of open cut mining operations on either side of the Bruce Highway approximately 25 km northwest of Marlborough, Central Queensland.

Project Details

The proposed development comprises the opening of pit walls parallel to the highway on both sides for a total length of approximately 3 km. The maximum depth of the portions of the pits near the highway is approximately 150m. The total width of the corridor between the pits is approximately 200m, ie the distance from the road centreline to each pit wall is approximately 100m.

Pits on either side of the highway will not be open concurrently and will be backfilled with spoil once the coal has been extracted.

Safety berms will be provided between the highway and the pit walls.

Overburden (surficial soils and weathered rock) will be excavated using standard earthmoving plant with a batter slope of 1H:1V. Rock cuts will be excavated with 45m deep benches and 10m berms with pre-splitting to reduce disturbance.

Geotechnical Information

Most of the geotechnical information supplied is derived from exploration boreholes which were drilled primarily to provide information on the quality and distribution of the coal seams in the project area. Selected boreholes near the highway alignment were re-analysed to provide geotechnical logs. This work was performed by a qualified experienced engineering geologist with R.P.E.Q. certification.

Rock strength properties were derived from logs, downhole sonic velocity tests and laboratory tests on cores from other boreholes in the project area.

Cross sections showing identified coal seams were provided and these together with the re-worked logs were used to prepare geotechnical cross sections for slope stability and deformation analyses. These cross sections were judged to provide a better indication of bedding inclination across the cross sections than could be determined based on the supplied borehole logs.

Geotechnical Analysis Slope Stability

Slope stability analyses were undertaken using GeoStudio software. This software package is preferred by DTMR and availability and expertise with package is a requirement for GE2 and GE3 certification. Initial analyses were performed using a simplified model prepared before detailed mapping of coal seams was made available. The results showed factors of safety in excess of 1.5 for pit depths up to 100m and in excess of 1.3 for pit depths up to 150m using rock strength parameters supplied by AMEC.

Following this analysis, further investigation of rock strength and elastic modulus properties was undertaken and a Hoek-Brown strength model was adopted with rock strength values derived from downhole sonic velocity tests. These were in general somewhat lower than typical laboratory strength values, hence it was judged that the strength model adopted was conservative and could potentially be improved by further investigation and testing.

The analysis produced the following results with probable lower bound strength values:

- > 2D circular slip failures produced FOS > 1.5 (As per DTMR requirement) for pit depths to 150m;
- > Planar wedge failures produced FOS > 1.5 for pit depths to approximately 125m and > 1.4 for pit depths to 150m;
- > Seismic stability is not critical;
- > 3D wedge failures not analysed but not considered plausible; and
- Analyses were done with pore pressure coefficient (Ru) = 0.15 as per DTMR requirements (this is considered to be conservative).

Geotechnical Analysis Deformation

Finite element deformation analyses were performed using Plaxis software. This software package is preferred by DTMR and availability and expertise with package is a requirement for GE2 and GE3

certification. Mohr Coulomb modelling was used for overburden and spoil and Hoek-Brown modelling for rock and coal seams.

The analysis showed maximum horizontal and vertical deflections at the highway centreline of 25mm and 8mm respectively. These results are preliminary but indicate that horizontal movement and settlement of the highway alignment is not likely to be significant.

Slope Monitoring

A slope monitoring programme including instrumentation would be required prior to commencement of excavations. This will most likely include installation of inclinometers.

Conclusions

The desktop study has shown that excavation of coal mining pits on either side of the highway is feasible without disruption to the highway. Additional geotechnical investigation is recommended, particularly if pit depths exceed 125m. Requirements for additional investigation would need to be discussed with DTMR before proceeding.

Limitations

This report is a desktop study based on information primarily obtained for the purpose of resource extraction.

This report does not form part of a certified pit design.

Table of Contents

	Project D	Details	iii
	Geotech	nical Information	iii
	Geotech	nical Analysis Slope Stability	iii
	Geotech	nical Analysis Deformation	iii
	Slope Mo	onitoring	iv
	Conclusi	ions	iv
	Limitatio	ns	iv
1	Introduct	tion	1
2	Pit Confi	guration	2
3	Informati	ion Supplied	4
	3.1	Reports	4
	3.2	Boreholes	4
	3.3	Pit Cross Sections	4
4	Geotech	nical Conditions	6
	4.1	Geology	6
	4.2	Material Parameters	6
5	Slope St	ability Modelling	11
	5.1	Introduction	11
	5.2	Failure Modes Considered	11
	5.3	Material Parameters	11
	5.4	2D Slip Surface Models	11
6	Deforma	ation Modelling	24
	6.1	Introduction	24
	6.2	Results	26
	6.3	Discussion	27
7	Conclusi	ions	28
	7.1	Pit Stability	28
	7.2	Deformations	28
	7.3	Construction Feasibility	28
	7.4	Recommendations for Additional Investigation	28
	7.5	Slope Monitoring	29

Appendices

Appendix A Geological Report

Appendix B Pit Cross Sections

Appendix C Laboratory test Data

Appendix D Results of Slope Stability Analysis

Appendix E Results of Deformation Analysis

Appendix F Description of Hoek-Brown Parameters

Tables

Table 4-1	Initial Material Properties	6
Table 4-2	Rock Strength Parameters from Laboratory Tests	7
Table 4-3	Composite Strength Properties	g
Table 5-1	Slope Stability Results Preliminary Model	12
Table 5-2	Slope Stability Results Revised Model	15
Table 5-3	Slope Stability Results – Pit Filling	16
Table 6-1	Plaxis Model Sequence	24
Table 6-2	Deformation Points	25
Table 6-3	Calculated Horizontal Deformations (mm) Isostatic Stress Condition	26
Table 6-4	Calculated Vertical Deformations (mm) Isostatic Stress Condition	26
Table 6-5	Calculated Horizontal Deformations (mm) $\sigma_H {=} 2\sigma_V$	26
Table 6-6	Calculated Vertical Deformations (mm) Isostatic σ_H =2 σ_V	27

Figures

Figure 1-1	Project Location	1
Figure 2-1	Concept Pit Design	2
Figure 2-2	Pit excavation year 2032	3
Figure 2-3	Pit excavation year 2033	3
Figure 3-1	Location of Cross Sections	4
Figure 3-2	XSect 5 NE side	5
Figure 3-3	XSect 5 NW Side	5
Figure 5-1	Initial Slope Stability Model Zero Bedding Dip	12
Figure 5-2	Initial Slope Stability Model 7° Bedding Dip	12
Figure 5-3	Failure Surface Zero Dip 100m pit depth	13
Figure 5-4	Failure Surface Zero Dip 150m pit depth	13
Figure 5-5	Failure Surface 7° Dip 100m pit depth	14
Figure 5-6	Failure Surface 7° Dip 150m pit depth	14
Figure 5-7	High Strength Model 150m Pit RHS	16
Figure 5-8	High Strength Model 150m Pit LHS	17
Figure 5-9	Low Strength Model Full Depth \ Pit RHS	17
Figure 5-10	Low Strength Model 150m Pit RHS	18
Figure 5-11	Lower Bound Strength RHS	19
Figure 5-12	Lower Bound Strength LHS	19
Figure 5-13	Lower Bound Strength R _u 0.15 100m deep pit RHS	20
Figure 5-14	Lower Bound Strength Ru 0.15 full depth pit RHS	20
Figure 5-15	Planar Failure 100m deep pit	21
Figure 5-16	Planar Failure Unfavourable Dip	21
Figure 5-17	Planar Failure bottom coal seam	22
Figure 5-18	Full Depth Pit RHS Pseudo Static 0.08g	22
Figure 5-19	Partial Pit Filling Stage 1	23
Figure 5-20	Partial Pit Filling Stage 2	23
Figure 6-1	Plaxis Model Initial Phase	25
Figure 6-2	Plaxis Model Full Depth Excavation RHS	25

1 Introduction

This report provides a desktop study of pit stability and likely ground movements associated with proposed mining works approximately 25km northwest of Marlborough, Central Queensland (Refer Figure 1-1). The proposed works comprise the excavation and re-filling of coal mine pits on either side of the Bruce Highway.

Detailed pit designs have not been prepared. The geotechnical information provided has been largely derived from coal exploration boreholes which were drilled to determine the spatial distribution and quality of coal seams. Selected boreholes were re-logged to provide geotechnical information and these logs together with geological commentary are presented in Appendix A.

Figure 1-1 Project Location

This report is a desktop study based on existing information and should not be considered as a final pit wall design. Slope stability and deformation analyses have been prepared for a range of material strength parameters and pit excavation sequences.

Preliminary details of the proposed pits are provided in Section 2.

The information used in the preparation of this report is summarised in Section 3.

Geotechnical Conditions are described in Section 4.

Slope stability and deformation modelling are described in Sections 5 and 6.

2 Pit Configuration

The draft pit designs comprise:

- > Box cut in overburden 1H:1V
- > Safety berms 10m high with 1.5H:1V slopes
- > Rock excavation with 0.5H:1V cut slopes and 10m berms at maximum 50m intervals.

Rock slopes along the road alignment are to be excavated using pre-splitting techniques. The configuration was adopted based on likely available drilling equipment. Slope stability and deformation analyses were performed using geometries based on the concept sketch shown in Figure 2-1. Figure 2-2 shows a typical section for Year 2032, Figure 2-3 shows a typical section for Year 2033. Pits will be back-filled with spoil following extraction of the coal.

At no time will pits be open on both sides of the highway.

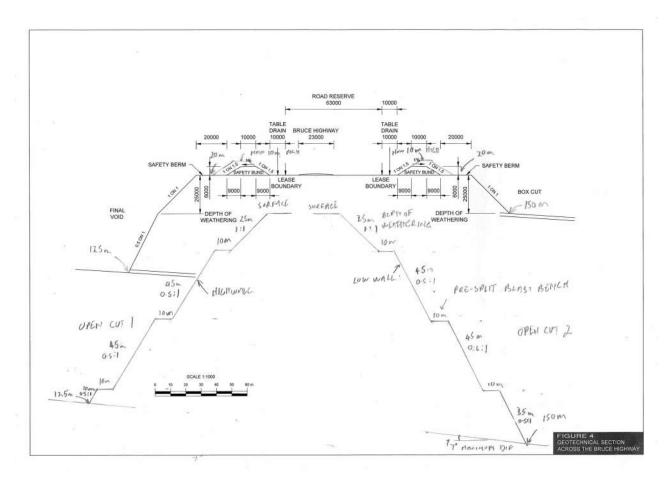


Figure 2-1 Concept Pit Design

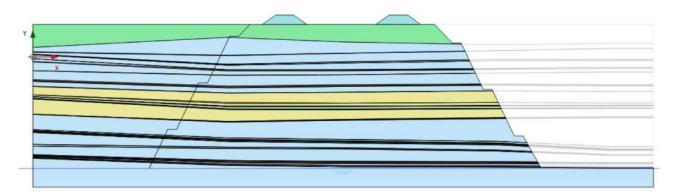


Figure 2-2 Pit excavation year 2032

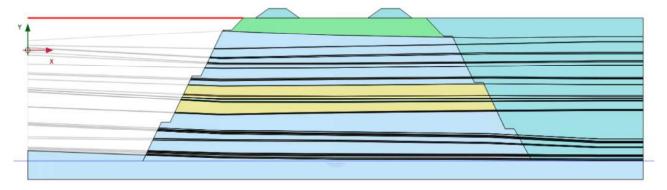


Figure 2-3 Pit excavation year 2033

3 Information Supplied

3.1 Reports

The following reports have been supplied:

- > Geotechnical Assessment of Bruce Highway (AMEC 2018)
- Geotechnical Assessment of Open Cut Mining Adjacent to the Bruce Highway, STYX Project (AMEC 2017 a)
- > Groundwater Investigations for the Styx Trial Pit (AMEC 2014)
- > Geotechnical Report for the Styx Coal Project (AMEC 2017 b)
- Preliminary Investigations for Sediment Dam, Water Storage Dam, Train Loadout and Haul Road, Styx Coal Project (AMEC 2017 c)

3.2 Boreholes

A large number of exploration boreholes have been drilled across the project, however these provide limited geotechnical information due to the absence of detailed geotechnical logging and the remoteness of the boreholes from the highway. A total of 10 boreholes near the highway were re-logged by an engineering geologist; the re-worked logs are presented in AMEC 2018 (Refer Appendix A). Detailed logging of discontinuities was not provided, however some core photos were provided although these do not cover the full cored depth of the boreholes.

Unconfined Compressive strength values derived from downhole sonic velocity logging were provided on some logs.

3.3 Pit Cross Sections

Pit geometries were provided in three stages:

- 1. Initial sketches provided by George Klenowski (Refer Figure 2-1)
- 2. Cross Sections with mapped coal layers provided by Michael McShane
- 3. Cross Sections with revised coal layers provided by Adriaan Benson (Refer Figure 3-1)

A total of five cross sections were provided as shown in Figure 3-1. Stability and deformation models were prepared for Cross Section 5 which had the deepest proposed excavation (Refer Figure 3-2 and Figure 3-3).

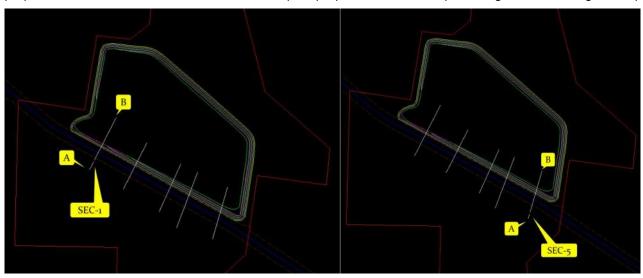


Figure 3-1 Location of Cross Sections

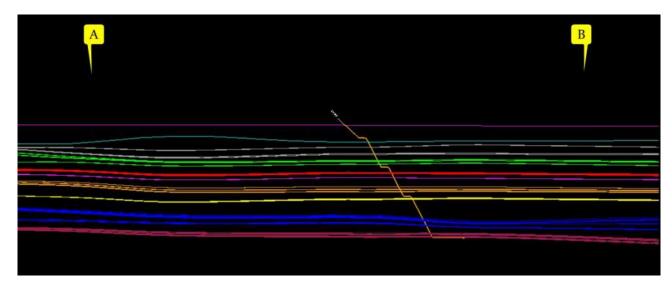


Figure 3-2 XSect 5 NE side

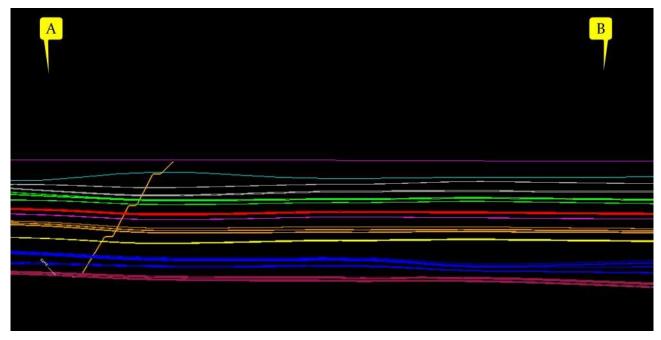


Figure 3-3 XSect 5 NW Side

4 Geotechnical Conditions

4.1 Geology

The local geology is described in Appendix A.

4.2 Material Parameters

4.2.1 Overburden

Refer Table 4-1.

4.2.2 Spoil

Refer Table 4-1.

4.2.3 Rock Strength and Modulus

Initial rock strength parameters were supplied by AMEC (2018) and are summarised in Table 4-1 below. These parameters were used in the initial stability model (Refer Section 5.4.1).

Table 4-1 Initial Material Properties

Material	Density (kN/m3)	Angle of Internal Friction φ (degrees)	Cohesion (kPa)
Overburden (clay and CW rock)	19.6	25	40
Spoil	18.6	34	0
Mudstone CW	18.6	24	60
Mudstone MW	18.6	25	200
Mudstone Fr	19.6	38	200
Siltstone CW	24.5	43	60
Shale Fr Competent	24.5	15	38 400
Sandstone HW	19.6	38	60
Sandstone Fr Weak	24.5	40	200
Sandstone Fr, Competent	24.5	28	27 200
Coal Fr	14.7	35.5	420
Coal CW	11.8	22	0
Soot	11.8	9	0
Intraformational Shear Zone	-	25	9

Additional stability modelling was undertaken based on Hoek-Brown strength parameters (Refer Appendix F). Typical values were derived from lab testing on core samples taken from project boreholes (not the boreholes with geotechnical logs provided). The following process was adopted:

- > Determine intact rock modulus from sonic velocity tests (Assume Poisson's Ratio 0.2);
- > Obtain UCS from laboratory test;
- > Assign GSI, mi and D parameters based on qualitative assessment of core; and
- > Calculate equivalent Mohr-Coulomb parameters using RocLab software.

The measured and derived rock properties are summarised in Table 4-2

Table 4-2 Rock Strength Parameters from Laboratory Tests

Sample	Rock Type / Failure Mechanism	Sonic Velocity (m/s)	UCS (MPa)	Young's Modulus (GPa)	GSI	mi	d	c (MPa)	Ф (deg)
STX084RR - GT001	Sandstone Shear Failure	3333	25.2	18.20	70	17	0	2.00	41.0
STX084RR - GT002	Sandstone Conical Failure	2323	4.6	8.30	40	17	0	0.23	32.1
STX084RR - GT003	Siltstone shear failure	n/a	5.02	n/a	n/a	n/a	n/a	n/a	n/a
STX084RR - GT004	Sandstone Shear Failure	3458	24.5	21.01	50	17	0	1.43	35.1
STX084RR - GT005	Sandstone Shear Failure	2938	20.9	14.25	70	17	0	1.66	41.0
STX084RR - GT007	Sandstone Shear Failure	3049	5.43	16.09	30	17	0	0.23	29.0
STX084RR - GT008	Mudstone Shear Failure	2938	18.4	13.62	30	7	0	0.57	21.8
STX084RR - GT009	Siltstone Shear Failure	3731	36.6	25.76	40	7	0	1.37	24.7
STX084RR - GT010	Sandstone Shear Failure	3004	18	15.20	70	7	0	1.21	33.1
STX084RR - GT011	Sandstone Shear Failure	3080	19.3	16.92	50	17	0	1.13	35.1
STX084RR - GT012	Sandstone Shear Failure	3223	30.5	16.88	50	17	0	1.78	35.1
STX084RR - GT013	Mudstone shear Failure	2702	19.6	12.54	40	7	0	0.74	24.7
STX090RR - GT001	Mudstone shear Failure	2144	3.56	6.74	30	7	0	0.11	21.8
STX090RR - GT002	Sandstone Conical Failure	n/a	6.25	n/a	n/a	n/a	n/a	n/a	n/a
STX090RR - GT003	Sandstone Shear Failure	2825	19.4	12.91	40	17	0	0.98	32.1
STX090RR - GT004	Mudstone Shear Failure	3072	22.8	15.15	40	7	0	0.86	24.7
STX090RR - GT005	Mudstone Shear Failure	2861	16.1	13.19	40	7	0	0.60	24.7
STX090RR - GT006	Siltstone Axial Failure	2984	11.7	14.29	40	7	0	0.44	24.7
STX090RR - GT007	Sandstone Shear Failure	2974	21.5	14.55	40	17	0	1.08	32.1
STX090RR - GT010	Mudstone Shear Failure	2929	12	13.88	40	7	0	0.45	24.7

GSI, mi and d are Hoek-Brown parameters, Mohr Coulomb c and $\boldsymbol{\phi}$ derived using RocLab Software

UCS and sonic velocity measured in tests on core

4.2.4 Composite Strength Model

Core logs showed mixed sandstone/siltstone/mudstone in many instances making it impractical to model individual rock strata. In addition, the initial slope stability modelling showed failure surfaces passing through the flat dipping strata at steep angles, hence a composite strength model was used with parameters defined in Table 4-3 on the following page. UCS values were determined from those shown on bore logs, these values were in turn derived from down-hole sonic tests as described in AMEC (2018).

.

Table 4-3 Composite Strength Properties

Material Type	Bulk Density (kN/m³)	c(kPa)	Φ(deg)	E' (GPa)	v	σ _{ci} (MPa)	mi	GSI	D
Spoil	18.6	0	34			N/A Mohr Coulomb	model only		
Overburden	19.6	40	25			N/A Mohr Coulomb	model only		
Mixed Sedimentary High	24	0.75	30.5	15	0.3	15	10	50	0
Mixed Sedimentary Low	14.7	350	24.6	10	0.3	10	10	30	0
Coal	14.7	670	21.8	10	0.3	10	7	30	0
Sandstone Fr	24	2375	41	15	0.3	30	17	70	0

4.2.5 Discontinuities

Bedding is generally uniform with an average dip of 3°. Maximum dip is about 7°. Partings occur along bedding planes. Jointing is generally widely spaced. Limited core photo data and geophysical logging of boreholes did reveal occasional discontinuities with steeper apparent dips, the persistence of such discontinuities is unlikely to be sufficient to permit the formation of other than small wedges.

To date no significant faults or dykes have been encountered during geological investigations.

5 Slope Stability Modelling

5.1 Introduction

Slope stability modelling was undertaken using the GeoStudio software package. Cross section geometries for the detailed model were generated from AutoCad files derived from 3d mining software used to map coal measures. These were supplied as AutoCad files and imported into GeoStudio as pictures. The stratigraphy between coal beds was filled in by referring to geotechnical borehole logs with sonic logs used to select appropriate strength properties.

5.2 Failure Modes Considered

5.2.1 2D Slip Circle Failure in Overburden

Overburden failure surfaces were modelled together with 2D rock failure surfaces. Where a lower FOS was calculated in the overburden this was noted in the results summary in Table 5-2.

5.2.2 2D Failure Surface in Rock

5.2.2.1 Circular Failure Surfaces

These were modelled using the Morgenstern and Price method.

5.2.2.2 2D Planar Failures

These were modelled assuming the presence of a thin layer with properties equivalent to the intra formational sheared zone as described in Table 4-1. At this stage there is no information as to whether such zones are continuous between beds. Zones were modelled at several locations at the top of coal seams.

5.2.3 3D Wedge Failure

Wedge failures have not been modelled. Occasional steeply dipping discontinuities were observed in core photos, however it is considered unlikely that the persistence of such discontinuities will be large enough to allow the development of large wedge failures affecting the highway. Small wedge failures in benches may be possible.

5.2.4 Toppling Failure

Toppling failures were not modelled and are considered unlikely considering the 0.5H:1V cut slopes.

5.3 Material Parameters

Material Parameters used are described in Section 4.2. Rock parameters were determined based on rock type and UCS derived sonic velocities from boreholes.

5.4 2D Slip Surface Models

5.4.1 Initial Model

5.4.1.1 Model Configuration

Initial modelling was done using pit geometry and stratigraphy based on borehole information (Borehole STX050). The boreholes with geotechnical logs did not provide sufficient information to determine the dip and dip direction of the bedding; for this preliminary study two models were prepared with zero bedding dip and constant 7° dip across the section as shown in Figure 5-1 and Figure 5-2 on the following page.

Material strength parameters from Table 4-1 were used. Fresh sandstone was modelled using the "weak" strength values ie c=200 kPa, φ =40°.

A perched water table was modelled, ie pore pressures were only considered in the overburden.

Additional modelling for the detailed model was undertaken using a pore pressure coefficient (R_u) of 0.15 as per Section 3.3.2 of the DTMR Geotechnical Design Standard.

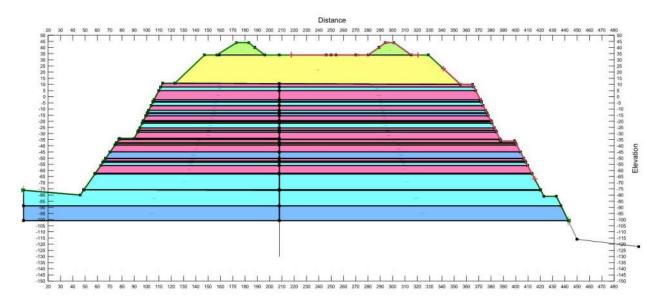


Figure 5-1 Initial Slope Stability Model Zero Bedding Dip

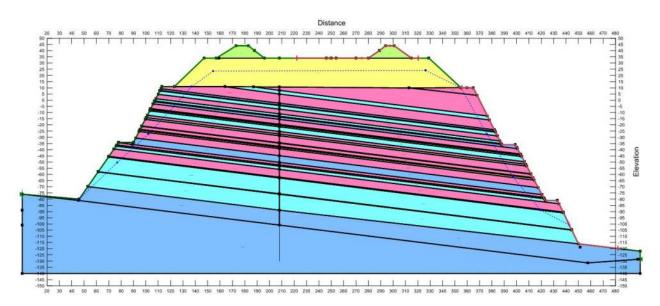


Figure 5-2 Initial Slope Stability Model 7° Bedding Dip

5.4.1.2 Results

The results of the preliminary slope stability analysis are summarised in Table 5-1.

Table 5-1 Slope Stability Results Preliminary Model

Model Geometry	Pit Depth	Water Table	FOS	Comments
Zero Dip	100m	Perched 11m deep	1.52	Refer Figure 5-3
	150m	Perched 11m deep	1.33	Refer Figure 5-4
7°Dip	100m	Perched 11m deep	1.57	Refer Figure 5-5
7°Dip	150m	Perched 11m deep	1.34	Refer Figure 5-6

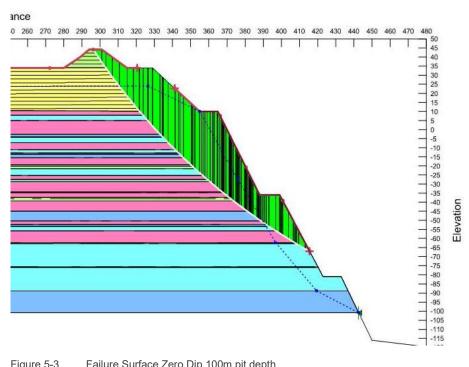


Figure 5-3 Failure Surface Zero Dip 100m pit depth

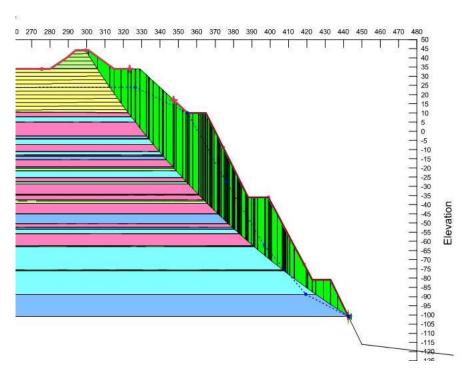


Figure 5-4 Failure Surface Zero Dip 150m pit depth

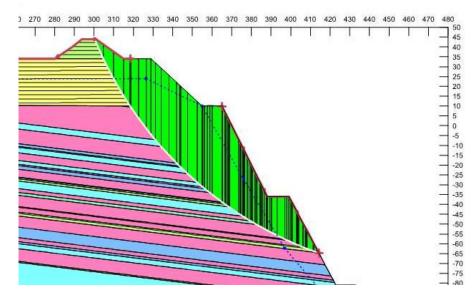


Figure 5-5 Failure Surface 7° Dip 100m pit depth

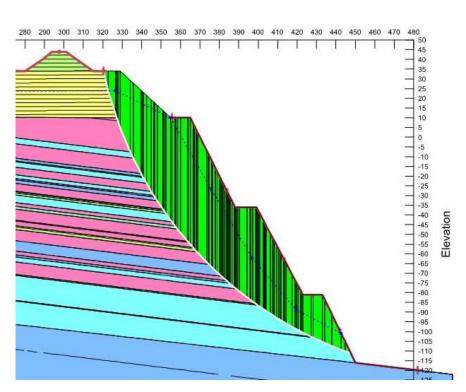


Figure 5-6 Failure Surface 7° Dip 150m pit depth

5.4.1.3 Discussion

The initial modelling showed factors of safety in excess of 1.5 for pit depth up to 100m and in excess of 1.3 for pit depths up to 150m. Further stability modelling was done using a model based on Hoek brown material parameters and stratigraphy based on 3D modelling of coal seams as described in Section 3.3.

5.4.2 Detailed Model

5.4.2.1 Model Setup

Following receipt of cross sections with coal seam depths derived from 3D pit modelling a revised slope stability analysis was performed. Hoek-Brown strength parameters were derived from logs and UCS values from sonic velocities. As many of the logs showed finely interbedded sandstone, siltstone and mudstone, a mixed sedimentary model was adopted as described in Section 4.2.4.

A perched water table was modelled, i.e. pore pressures were only considered in the overburden.

Additional modelling was undertaken using a pore pressure coefficient (R_u) of 0.15 as per Section 3.3.2 of the DTMR Geotechnical Design Standard.

5.4.2.2 Results

A summary of results is presented in Table 5-2. These analyses are for open pits.

Table 5-2 Slope Stability Results Revised Model

	,			
Model Geometry	Pit Depth	Water Table	FOS	Comments
High Strength RHS	100m	Perched	1.54/2.00	Lower value is failure in overburden Refer Figure 5-7
High Strength LHS	Full Depth	Perched	2.07	Refer Figure 5-8
Low Strength RHS	Full Depth	Perched	1.02	Refer Figure 5-9
Low Strength RHS	100m	Perched	1.34	Refer Figure 5-10
Probable Lower Bound Strength RHS	Full Depth	Perched	1.54/1.65	Lower value is failure in overburden Refer Figure 5-11
Probable Lower Bound Strength RHS	Full Depth	Perched	1.63	Refer Figure 5-12
Probable Lower Bound Strength RHS	100m	R _u 0.15	1.62/1.91	Lower value is failure in overburden Refer Figure 5-13
Probable Lower Bound Strength RHS	Full Depth	Ru 0.15	1.56	Refer Figure 5-14
Planar Failure RHS	100m	R _u 0.15	1.73	Refer Figure 5-15
Planar Failure RHS	125m	R _u 0.15	1.43	Unfavourable geometry on dipping coal seam Refer Figure 5-16
Planar Failure RHS	Full Depth	R _u 0.15	1.44	Figure 5-17
Probable Lower Bound Strength RHS	Full Depth	Ru 0.15	1.41	Pseudo static seismic 0.08g Refer Figure 5- 18

Table 5-3 Slope Stability Results – Pit Filling

Model Geometry	Pit Depth	Water Table	FOS	Comments
Probable Lower Bound Strength RHS	Full Depth	R _u 0.15	1.88	Pit filled to bottom of 2 nd bench Refer Figure 5-19.
Probable Lower Bound Strength RHS	Full Depth	R _u 0.15	2.80	Pit filled to bottom of 1st bench Refer Figure 5-20.

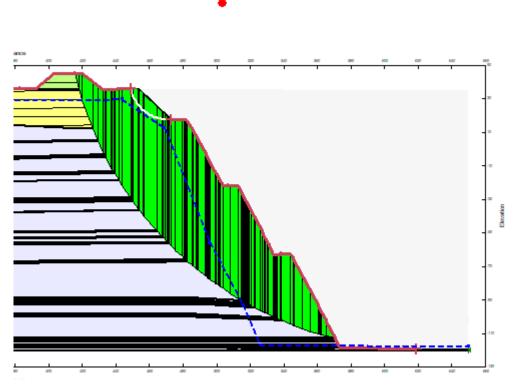


Figure 5-7 High Strength Model 150m Pit RHS

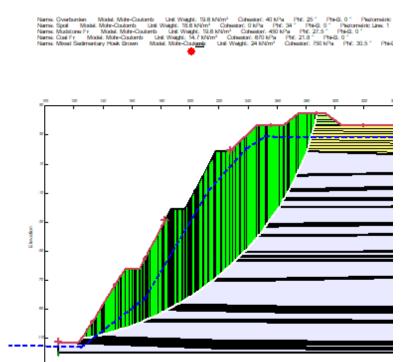


Figure 5-8 High Strength Model 150m Pit LHS

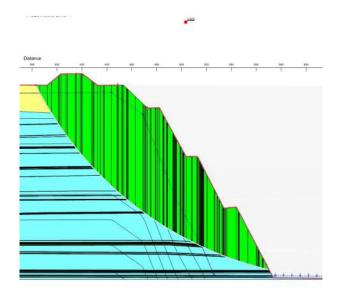


Figure 5-9 Low Strength Model Full Depth \ Pit RHS

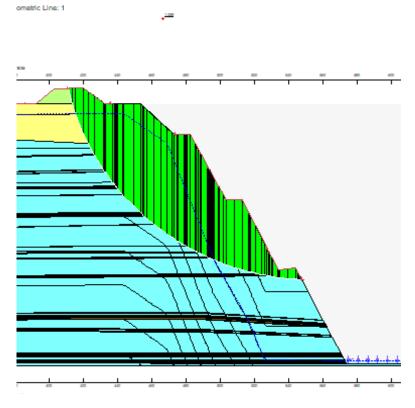


Figure 5-10 Low Strength Model 150m Pit RHS

Piezometric Line: 1

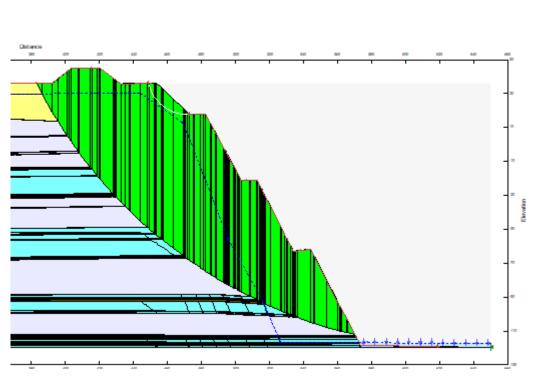


Figure 5-11 Lower Bound Strength RHS

Name: Mood Seatmentary Hole Brown La Model. Mate-Coatanta Unit Weight: 24 NVm² Colesator: 750 NVm Model. Mate-Coatanta Unit Weight: 24 NVm² Colesator: 750 NVm Model. Mate-Coatanta

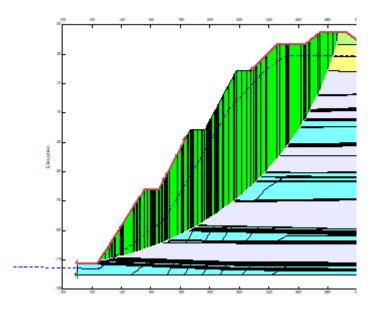


Figure 5-12 Lower Bound Strength LHS

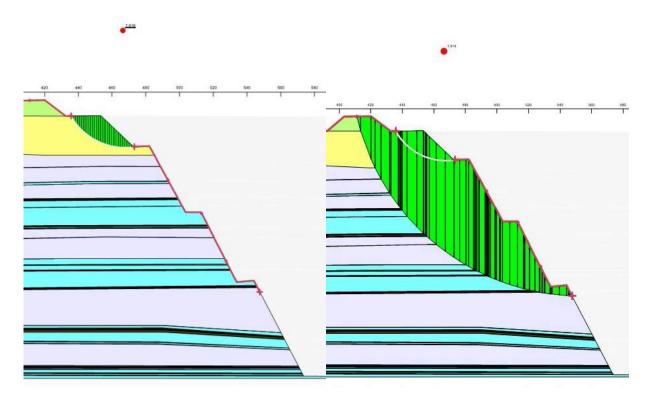


Figure 5-13 Lower Bound Strength R_{u} 0.15 100m deep pit RHS

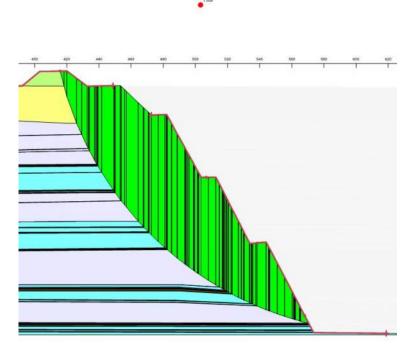


Figure 5-14 Lower Bound Strength R_u 0.15 full depth pit RHS

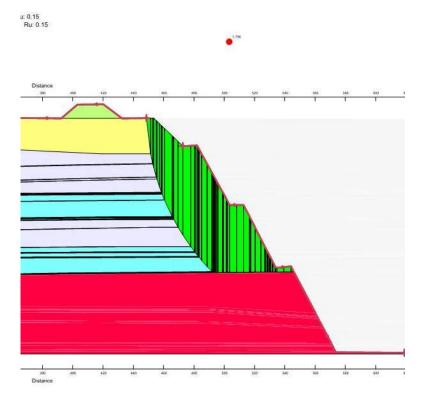


Figure 5-15 Planar Failure 100m deep pit

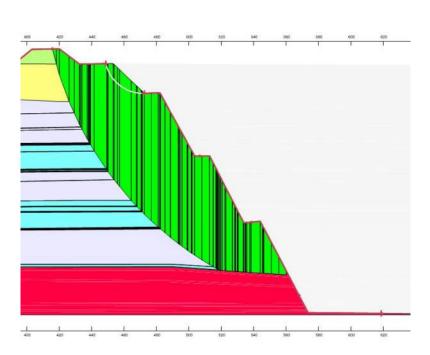


Figure 5-16 Planar Failure Unfavourable Dip

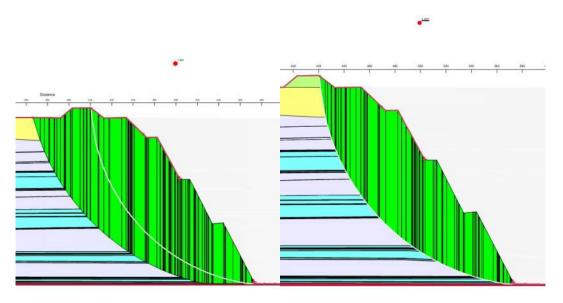


Figure 5-17 Planar Failure bottom coal seam



Figure 5-18 Full Depth Pit RHS Pseudo Static 0.08g

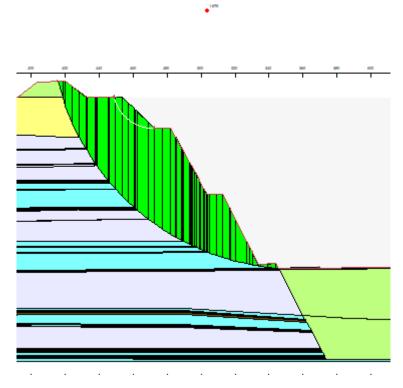


Figure 5-19 Partial Pit Filling Stage 1

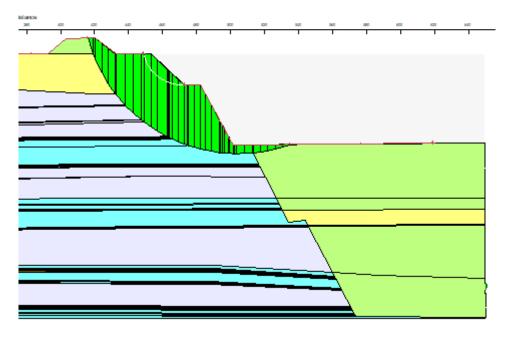


Figure 5-20 Partial Pit Filling Stage 2

6 Deformation Modelling

6.1 Introduction

Deformation modelling was undertaken using PLAXIS 2D software. The cross section geometry was identical to the geometry used to develop the slope stability model described in Section 5.4.2.

6.1.1 Material Properties

The following material models were used:

> Spoil and Overburden Mohr Coulomb Model> Rock and Coal Hoek Brown Model

The material properties used are summarised in Table 4-3.

6.1.2 Excavation Sequence

Table 6-1 Plaxis Model Sequence

adi dequence	
Description	Comments
Initial Conditions	No construction
Construct Safety Bunds	
Excavate to base of overburden RHS	
Excavate to bottom of 1st bench RHS	
Excavate to middle of 2 nd bench RHS	Base of coal seam approx. 100m deep
Excavate to middle of 3 rd bench RHS	
Excavate to bottom of deepest mapped coal seam RHS	Full pit depth
Fill to bottom of 1st bench	
Fill to base of overburden	
Fill to original ground level	
Excavate to base of overburden LHS	
Excavate to approx. RL -10 LHS	
Excavate to approx. RL -65 LHS	
Excavate to bottom of deepest mapped coal seam	
	Initial Conditions Construct Safety Bunds Excavate to base of overburden RHS Excavate to bottom of 1st bench RHS Excavate to middle of 2nd bench RHS Excavate to middle of 3rd bench RHS Excavate to middle of 3rd bench RHS Excavate to bottom of deepest mapped coal seam RHS Fill to bottom of 1st bench Fill to base of overburden Fill to original ground level Excavate to base of overburden LHS Excavate to approx. RL -10 LHS Excavate to approx. RL -65 LHS

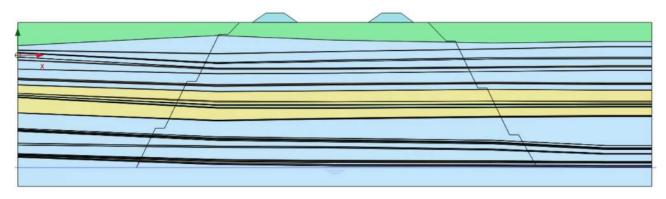


Figure 6-1 Plaxis Model Initial Phase

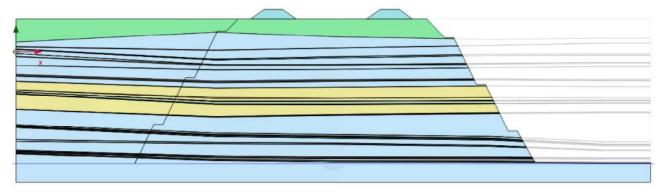


Figure 6-2 Plaxis Model Full Depth Excavation RHS

6.1.3 Initial Stress Conditions

Three initial stress states were considered, namely:

- > Automatic determination of K₀
- > Isostatic Conditions ($\sigma_H = \sigma_V$)
- > Locked in Stresses ($\sigma_H=2\sigma_V$)

6.1.4 Calculated Deformations

Deformations were output for points as described in Table 6-2. Additional deformation information including deformed mesh, deformation contours etc is available from the Plaxis model but has not been presented here. It is understood that the primary concern is horizontal and vertical movement at the highway alignment.

Table 6-2 Deformation Points

Point Number	Location
A	Road centreline
В	Top of cut in overburden
С	Inside of 1st bench
D	Outside of 1 st bench
Е	Inside of 2 nd bench
F	Outside of 2 nd bench
G	Inside of 3 rd bench
Н	Outside of 3 rd bench
I	Bottom of cut (lowest coal bed)

6.2 Results

Calculated deformations are presented in Table 6-3 to Table 6-6.

6.2.1 Isostatic Model

Table 6-3 Calculated Horizontal Deformations (mm) Isostatic Stress Condition

	A	В	С	D	Е	F	G	Н	1
Phase 1	0.1	1.4	0.2	-0.1	0.1	0.1	0.1	0.1	0.0
Phase 2	0.3	0.9	0.0	4.1	0.7	0.7	0.5	0.5	0.2
Phase 3	1.9	3.2	3.2	5.4	4.3	3.5	2.4	2.2	0.9
Phase 4	3.8	6.1	6.3	4.4	9.7	10.0	3.8	3.3	1.4
Phase 5	6.5	10.0	10.2	2.3	14.7	15.0	15.3	16.0	2.0
Phase 6	7.7	12.3	13.0	0.6	17.2	17.6	21.0	22.1	3.6

Table 6-4 Calculated Vertical Deformations¹ (mm) Isostatic Stress Condition

	Α	В	С	D	Е	F	G	Н	1
Phase 1	-0.1	0.1	-0.2	-0.1	-0.1	-0.1	0.0	0.0	0.0
Phase 2	-0.2	2.7	3.4	4.1	2.1	2.2	1.2	1.2	0.4
Phase 3	-0.5	3.1	4.3	5.4	5.2	6.9	3.9	4.2	1.5
Phase 4	-1.0	2.1	3.3	4.4	4.8	6.1	5.0	5.8	2.2
Phase 5	-1.8	0.2	1.3	2.3	2.8	4.1	4.3	6.1	3.0
Phase 6	-2.3	-1.2	-0.2	0.6	0.7	1.9	3.5	5.3	3.8

Table 6-5 Calculated Horizontal Deformations (mm) σ_H =2 σ_V

	Α	В	С	D	E	F	G	Н	1
Phase 1	0.2	1.5	0.3	0.2	0.2	0.2	0.1	0.1	0.0
Phase 2	0.4	1.0	0.3	-0.4	0.8	0.7	0.5	0.5	0.2
Phase 3	4.6	8.4	9.7	9.7	8.4	6.6	3.9	3.6	1.3
Phase 4	12.2	19.9	21.7	21.6	28.1	29.2	16.8	16.7	2.4
Phase 5	21.3	36.2	40.1	39.9	48.5	49.7	51.9	54.1	5.3
Phase 6	24.7	48.2	48.0	59.5	59.5	60.6	65.4	67.6	12.0

^{1 +}ve up, -ve down

Table 6-6 Calculated Vertical Deformations (mm) Isostatic σ_H =2 σ_V

	Α	В	С	D	E	F	G	Н	1
Phase 1	-0.2	0.0	-0.2	-0.1	-0.1	-0.1	0.0	0.0	0.0
Phase 2	-0.2	0.0	3.5	4.5	2.1	2.2	1.2	1.2	0.4
Phase 3	-0.9	0.0	3.2	4.2	4.4	6.6	3.9	4.3	1.4
Phase 4	-3.0	0.0	-1.4	-0.1	2.9	5.0	5.6	6.2	1.9
Phase 5	-6.9	0.0	-11.8	-10.7	-3.2	0.4	5.0	8.3	5.7
Phase 6	-8.6	0.0	-20.8	-19.3	-7.3	-3.2	3.4	7.4	8.0

6.3 Discussion

The deflection calculations show maximum lateral movements of 8mm and 25mm respectively at the highway centreline for isostatic and σ_H =2 σ_V stress conditions. Calculated settlements (vertical deformation) are 2mm and 9mm.

Deflections of this order of magnitude are unlikely to significantly affect the performance of the highway pavement and drainage.

7 Conclusions

7.1 Pit Stability

7.1.1 Acceptable Factor of Safety

DTMR Geotechnical Design Standards Minimum Requirements require a minimum factor of safety of 1.5 for long-term stability (Section 3.3). No acceptable factor of safety is provided for temporary works or short term conditions although a lower factor of safety of 1.3 is referenced for fill slopes in other parts of the document. As the proposed works differ from those normally undertaken by or for DTMR it is not clear whether a factor of safety less than 1.5 would be acceptable.

No factor of safety for seismic conditions is supplied; the document does state that the relevance of seismic stability issues shall be investigated. Limited slope stability modelling using a pseudo static acceleration of 0.08g indicates that seismic factors of safety are well in excess of the value typically used in dam studies (1.1).

7.1.2 Pore Pressure Conditions

Groundwater investigations indicate a perched water table in the overburden material (i.e. not affecting the sedimentary rocks and coal layers. DTMR Geotechnical Design Standards require analyses to be performed using a minimum pore pressure coefficient (R_u) of 0.15, both cases have been considered.

7.1.3 Discussion of Results

A summary of the results is provided in Table 5-2. The most critical section is the high wall on the north-eastern side of the pit. Using probable lower-bound strength parameters in excess of 1.5 were obtained for all circular failure surfaces.

Factors of safety as low as 1.02 were obtained for lowest strength parameters (considered an unlikely scenario).

Planar wedge failures along a postulated low strength shear zone produced factors of safety as low as 1.43 for the full depth pit and 1.73 for a 100m deep pit.

For planned pit depths greater than 100m additional geotechnical investigations are recommended; it is probable that these would give more certainty to pit designs with depths greater than approximately 120m (Refer Section 7.4).

7.2 Deformations

A deformation study was undertaken using Plaxis finite element software. The results can only be considered indicative, however they indicate likely maximum horizontal deflections at the highway centreline of the order of 25mm.

7.3 Construction Feasibility

This report does not provide comments on construction feasibility. It should be noted that the assumption has been made that rock slopes will be pre-split. This should minimise disturbance to the rock, a disturbance factor (d) of zero has been assumed for Hoek-Brown strength parameters used in modelling.

7.4 Recommendations for Additional Investigation

On the basis of the desktop evaluation and prior to DTMR and regulatory negotiations we suggest the following as a minimum scope for further additional investigation work. We strongly recommend that this scope is discussed with all stake holders prior to commencement of further investigation.

We propose that four geotechnical holes are drilled by specialist drilling contractors to 165m depth (pit depth plus 10%) with SPT sampling in the upper soil horizons at 1.5m depth intervals and rock coring as soon as 2 consecutive SPTs achieve refusal. These holes will be logged to AS1726 by an experienced geologist or geotechnical engineer at site. Particular attention needs to be given to logging of the structural defects within the core.

The cores will be photographed and then wrapped and stored carefully to preserve moisture levels. Representative cores will be selected for geomechanical analysis to further understand the rock strength and deformation parameters. Laboratory testing is likely to include:

- > CU triaxials for weathered overburden material;
- Rock triaxials with appropriate cell pressures considering the depth of the pits; and
- > Shear box tests on sheared zones if encountered.

A geotechnical investigation report will then be written that will use both this desktop study plus the new information from the borehole investigation to supplement the geotechnical model and stability analysis.

7.5 Slope Monitoring

A properly designed monitoring system will be required, details will need to be discussed and finalised. This may include the following items:

- > Surface monitoring points (x,y,z movements) with baseline as required;
- > Inclinometers to full pit depth (either inside or outside safety bunds); and
- > Regular inspections.

Instruments would be monitored on a regular basis and following each blast.

APPENDIX

В

HISTORICAL BOREHOLE DATA

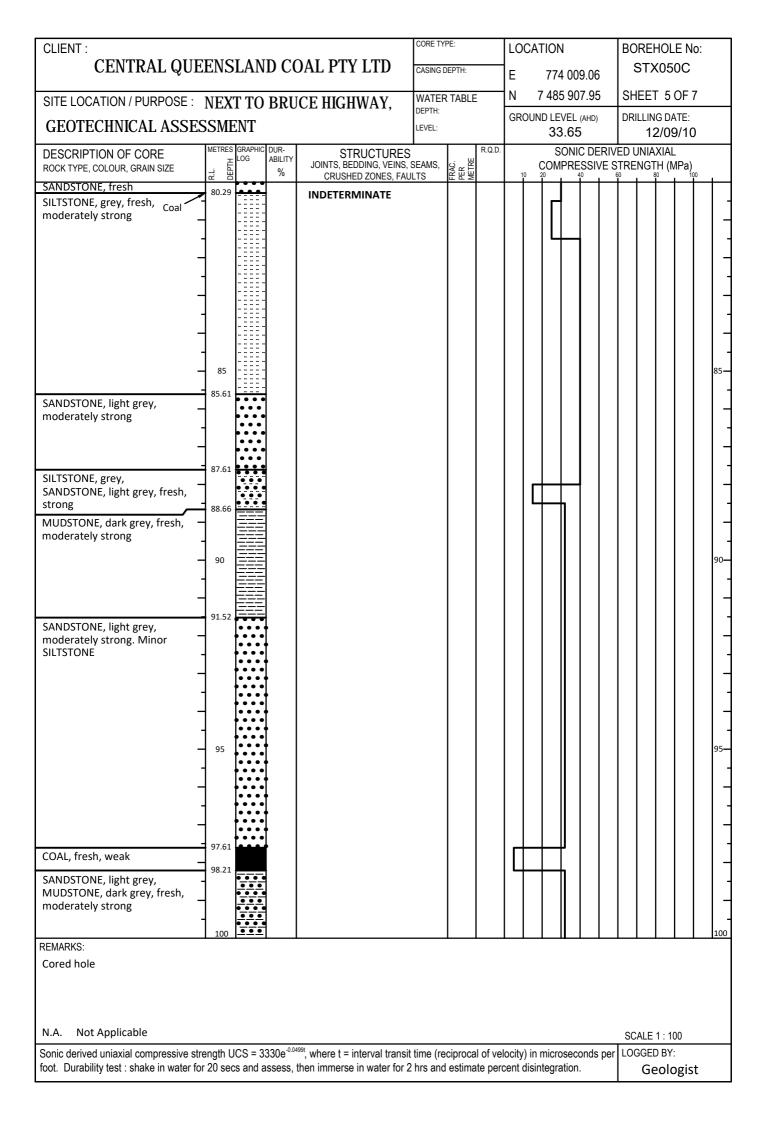
CLIENT:		CORE TYPE: LOCATION				BOREHOLE No: STX00505											
CENTRAL QUE	ENS	LAN	D C	OAL PTY LTD				773 6	57.01		S	TX00)505				
SITE LOCATION / PURPOSE :	NEX	T TO	BRU	ICE HIGHWAY.	WATER	RTABLE		N	7	486 0	63.69		SHE	ET 1	OF 5		
GEOTECHNICAL ASSES				,	DEPTH: LEVEL:			GR	OUNC	35.2			DRILLING DATE: 09/11/14				
DESCRIPTION OF CORE ROCK TYPE, COLOUR, GRAIN SIZE	METRES DEPTH DEPTH		DUR- ABILITY %	STRUCTURES JOINTS, BEDDING, VEINS, CRUSHED ZONES, FAL	SEAMS, ILTS	FRAC. PER METRE	R.Q.D.		C 20	SON OMPR				NAXIA GTH (₽		1	
SOIL, dark brown	1.00	*** *** ****		N.A.				N.	Α.							_	
SAND, medium brown	1.00															5 —	
REMARKS: Chip hole																	
N.A. Not Applicable														LE 1 :			
Sonic derived uniaxial compressive str foot. Durability test : shake in water fo									per		Geol	_{Y:} logist	-				

CLIENT:	0 A T DOTT TOD	LOCATION			1	BOREHOLE No:										
CENTRAL QUI	CENTRAL QUEENSLAND COAL PTY L								CASING DEPTH: E 773 6			{	STX(00505	5	
SITE LOCATION / PURPOSE :	NFX	T TO	RRI	ICF HIGHWAY	WATER	TABLE		N	7 4	486 06	3.69	SH	IEET	2 OF	5	
GEOTECHNICAL ASSE			Dicc	oe manwii,	DEPTH: LEVEL:			GRO		LEVEL		DRI		DATE:		
	METRES	GRAPHIC	DUR-	CTRUCTURE	35.21 R.Q.D. SONIC D				C DEDI	/FD I	INIIAY	/11/1 <u>/</u>				
DESCRIPTION OF CORE ROCK TYPE, COLOUR, GRAIN SIZE	R.L.	LOG	ABILITY %	STRUCTURES JOINTS, BEDDING, VEINS, CRUSHED ZONES, FAL	SEAMS, JLTS	FRAC. PER METRE		10	C(OMPRE	ESSIVE	STRE	NGTH	I (MPa)	00	
SAND, medium brown	25			Base of weathering	g 28.50			N.F.							- - - - - 25- - -	
SANDSTONE, light grey, fresh, fine to medium grained				INDETERMINATE				NJ	o son	nic log					30— - - - - 35— - - - - - - - - - - - - - - - - - - -	
REMARKS: Chip hole	,	•						- 1	,	•	. 1		•	•		
N.A. Not Applicable										-			ALE 1			
Sonic derived uniaxial compressive st foot. Durability test: shake in water for	ic derived uniaxial compressive strength UCS = 3330e ^{-0.0499t} , where t = interval. Durability test: shake in water for 20 secs and assess, then immerse in water for 20 secs and assess.						of vel te per	locity) cent d	in mi isinte	icrosed gration	onds pe 1.	LOGGED BY: Geologist				

CLIENT:			CORE TYPE: LOCATION			BOREHOLE No:					
CENTRAL QUE	ENSLAND	COAL PTY LTD	CASING DEPTH:		E 773	657.01	STX00505				
SITE LOCATION / PURPOSE :	NEXT TO BI	RUCE HIGHWAY.	WATER TABL	E	N 7 486	063.69	SHEET 3 OF 5				
GEOTECHNICAL ASSES		vool manvin,	DEPTH: LEVEL:		GROUND LEV		DRILLING DATE: 09/11/14				
DESCRIPTION OF CORE ROCK TYPE, COLOUR, GRAIN SIZE	METRES GRAPHIC DUR LOG ABIL 1.2 9/	LITY JOINTS BEDDING VEINS	SEAMS, 🙀 🕍	R.Q.D.	SC COMF	ONIC DERIV	ED UNIAXIAL TRENGTH (MPa)				
SANDSTONE, light grey, fresh COAL, fresh SANDSTONE, light grey, fresh COAL, undifferentiated, fresh	48.68 48.98	INDETERMINATE			No sonic l	log	45— 				
- -	50.22						- -				
SANDSTONE, light grey, fresh	59.22				$ \ \ \ $		_				
REMARKS: Chip hole N.A. Not Applicable Sonic derived uniaxial compressive str	ength UCS = 3330	e ^{-0.0499t} , where t = interval transit	time (reciproc	al of vel	locity) in micros	seconds per	SCALE 1:100				
foot. Durability test : shake in water for	20 secs and asse	ss, then immerse in water for 2	hrs and estim	ate per	cent disintegrat	tion.	Geologist				

CLIENT:		CORE TYPE: LOCATION				BOREHOLE No:										
CENTRAL QUE	OAL PTY LTD	CASING D	EPTH:		E	77	3 65	7.01		S	TX00)505				
SITE LOCATION / PURPOSE :	NEX'	ТТО	BRU	CE HIGHWAY.	WATER	RTABLE		N	7 48	6 06	3.69		SHE	ET 4	OF 5	5
GEOTECHNICAL ASSES				<u> </u>	DEPTH: LEVEL:			GRO	OUND LE	VEL 5.21				LING D 09/1		
DESCRIPTION OF CORE		GRAPHIC	DUR-	STRUCTURES	<u> </u>		R.Q.D.			SONIC	C DE	<u>l</u> Rive	-D UN	ΙΙΔΧΙΔ	ı	
ROCK TYPE, COLOUR, GRAIN SIZE	R.L. DEPTH	LOG	ABILITY %	JOINTS, BEDDING, VEINS, CRUSHED ZONES, FAL	SEAMS, JLTS	FRAC. PER METRE		10	CON	IPRE	SSIV	E S	TREN	GTH (MPa)	0 .
SANDSTONE, light grey, fresh				INDETERMINATE	-			N	lo sonic	log						
COAL, fresh SANDSTONE, light grey, fresh	64.77 65 65.15															65—
COAL, undifferentiated, fresh	74.99 75															75—
SANDSTONE, light grey, fresh	75.99															
	1															
COAL, undifferentiated, fresh	77.34	•••														
MUDSTONE, fresh	77.82 78.04 78.23															
COAL, fresh	78.23	==														
MUDSTONE, dark grey, fresh	78.99	===														
COAL, fresh MUDSTONE, fresh	79.35 79.54															
COAL, fresh	79.54 79.67 80			MUDSTONE, fresh												80
REMARKS: Chip hole N.A. Not Applicable														LE 1 : 1		
Sonic derived uniaxial compressive str foot. Durability test: shake in water fo												per		SED BY		_
iool. Durability test: snake in water to	uten infinerse in water for 2	ı ıııs and	estima	ne pero	ent (usintegr	ื่อแดก.		- 1	(Geol	ogis	[

CLIENT:		CORE TYPE: LOCATION				BOREHOLE No:											
CENTRAL QUE	ENS	LAN	D C(OAL PTY LTD	CASING D	EPTH:		E 773 657.01					STX00505				
SITE LOCATION / PURPOSE :	NEX	ГТО	BRU	CE HIGHWAY.	WATER	RTABLE		N	7 48	36 06	3.69)	SHE	EET	50	F 5	
GEOTECHNICAL ASSES			2100		DEPTH: GROUND LEVEL (LEVEL: 35.21					DRILLING DATE: 09/11/14							
DESCRIPTION OF CORE ROCK TYPE, COLOUR, GRAIN SIZE	R.L. DEPTH	GRAPHIC LOG	DUR- ABILITY	STRUCTURES JOINTS, BEDDING, VEINS, CRUSHED ZONES, FAL	SEAMS,	FRAC. PER METRE	R.Q.D.	10	CON	SONI					(IAL H (MP	Pa)	•
MUDSTONE, fresh COAL, fresh	80.05 80.30	• • • •		INDETERMINATE					o soni	l c log				T	T		
SANDSTONE, light grey, fresh																	
END OF HOLE 81.46 m		••••												+	+	+	+
_																	
_																	
-																	
-																	
_	85																85—
-																	
_																	-
-																	
_																	-
• _																	
-	90																90—
																	-
_																	
_																	
-																	-
-																	
_																	
-																	
_	95																95—
- -																	
_																	-
-																	
_																	-
-	100																100
REMARKS:	, 100					•					!						1200
Chip hole																	
N.A. Not Applicable													SCA	\ 1	: 100		
Sonic derived uniaxial compressive stre									per		GED						
foot. Durability test : shake in water for	then immerse in water for 2	2 hrs and	estima	ite perd	cent o	lisinteg	ration				Ged	olog	gist				



CLIENT:		LOCATION				BOREHOLE No:													
CENTRAL QUE	OAL PTY LTD	CASING D	EPTH:		Ε		774 0	09.06	6	S	TX0)50C							
SITE LOCATION / PURPOSE :	NEX	ТТО	BRU	CE HIGHWAY.	WATER	RTABLE	<u> </u>	N	7	485 9	07.95	5	SHE	EET	1 OF	7			
GEOTECHNICAL ASSES				· · · · · · · · · · · · · · · · · · ·	DEPTH: LEVEL:			GR	OUNI	33.6)	DRIL		DATE:				
DESCRIPTION OF CORE		GRAPHIC	DUR-	STRUCTURES			R.Q.D.					ERIV	ED UI	NIAXI			_		
DOOK TYPE OOLOUP OPANIOTE	R.L. DEPTH	LOG	ABILITY %	JOINTS, BEDDING, VEINS, CRUSHED ZONES, FAU	SEAMS, LTS	FRAC. PER METRE			C	OMPR	ESSI	VE S	TREN	IGTH ₽	(MPa)	00			
CLAYSTONE, brown, moderately weathered CLAYSTONE, brown, moderately weathered CLAYSTONE, brown, moderately weathered SANDSTONE, weathered REMARKS: Cored hole N.A. Not Applicable	10 15 18.93 19.54 20			INDETERMINATE				N.						ALE 1:			5		
Sonic derived uniaxial compressive stre												per		GED E					
ioot. Durability test : snake in water for	∠u sec	s and a	issess, t	itien inimerse in water for 2	nis and	estima	ne pero	ent (· · · · · · · · · · · · · · · · · · ·						ologist				

CENTRAL OHEENSLAND COAL PTV LT						CORE TYPE: LOCATION CASING DEPTH: 5774 000				BOREHOLE No:							
CENTRAL QUE	CENTRAL QUEENSLAND COAL PTY LT							Ε	7	74 00	9.06		STX	050C			
SITE LOCATION / PURPOSE :	NEX	T TO	BRU	ICE HIGHWAY.	WATER	TABLE	<u> </u>	N	7 4	85 90	7.95	SH	IEET	2 OF	7		
GEOTECHNICAL ASSES			2100	02 11101111111,	DEPTH: LEVEL:			GR		LEVEL 33.65		DR		DATE:			
DESCRIPTION OF CORE		GRAPHIC LOG	DUR-	STRUCTURES	 }		R.Q.D.			SOM	C DED	IVED I	INIIAY	ΊΛΙ			
ROCK TYPE, COLOUR, GRAIN SIZE	R.L. DEPTH	LOG	ABILITY %	JOINTS, BEDDING, VEINS, CRUSHED ZONES, FAL	SEAMS, JLTS	FRAC. PER METRE		10	CC	MPRE	SSIVE	STRE	NGTI	H (MPa)	00		
SANDSTONE, weathered CLAYSTONE, Core loss	20.10 20.41	7777		INDETERMINATE				N.	Α.								
MUDSTONE, brownish	20.85		1												4		
grey, weathered	21.73	\equiv													-		
Core loss	22.15	<u> </u>													-		
SANDSTONE, MUDSTONE,	22.58																
slightly weathered -															_		
-	24.25																
SANDSTONE, light grey, fresh, moderately weak	24.23			■ Base of weathering	ıg										-		
_	25	•		24.70											25—		
_																	
-															-		
_	27.39	•													-		
Mainly MUDSTONE, grey, fresh,	27.59														1		
moderately weak. Core loss=																	
Minor SANDSTONE															_		
-															-		
_	30 30.42														30—		
SANDSTONE, light grey, fresh, moderately strong –	30.42	• • •															
-		•													-		
_															-		
-																	
_																	
_															4		
-									l Ir		\vdash	\dashv			-		
_	35										\Box	1			35—		
_															_		
-															-		
_																	
SILTSTONE, grey, fresh, —	37.84	- : : : :															
moderately strong															-		
	39.24	- = = = =													-		
COAL, fresh, weak MUDSTONE, fresh,	39.72 40		ł												40		
REMARKS:	,0			•		•		!		1				•			
Cored hole																	
N.A. Not Applicable																	
	enath l	JCS = 3	330e ^{-0.04}	199t, where t = interval transi	t time (re	ciproca	l of vel	ocitv) in mi	crosec	onds ne		GGED	1 : 100 D BY:			
	onic derived uniaxial compressive strength UCS = $3330e^{-0.0499}$, where t = interval travot. Durability test: shake in water for 20 secs and assess, then immerse in water for												Geologist				

CLIENT:		CORE TYPE: LOCATION CASING DEPTH: 774 000 0C				BOREHOLE No:													
CENTRAL QUE	CENTRAL QUEENSLAND COAL PTY LT							Е	774 00	9.06	ST	(050C							
SITE LOCATION / PURPOSE :	NEXT	TO	BRU	CE HIGHWAY,	WATER DEPTH:	RTABLE		N	7 485 90			7 3 OF 7	7						
GEOTECHNICAL ASSES	SME	NT			LEVEL:			GRO	JND LEVEL 33.65			G DATE: 2/09/10)						
DESCRIPTION OF CORE ROCK TYPE, COLOUR, GRAIN SIZE	METRES OF L	GRAPHIC LOG	DUR- ABILITY %	STRUCTURES JOINTS, BEDDING, VEINS, CRUSHED ZONES, FAI	SEAMS, JLTS	FRAC. PER METRE	R.Q.D.	10	SONIO COMPRE	SSIVE S	ED UNIA	XIAL H (MPa)	0						
MUDSTONE, dark brown, fresh, weak to strong – -				INDETERMINATE									- - -						
SANDSTONE, light grey, fresh, moderately strong	42.53												- - - 45—						
MUDSTONE, carbanaceous, dark brown, fresh, weak										-									
Coal SANDSTONE, light grey, fresh Coal	48.33								H										
SILTSTONE, mid grey, fresh, moderately weak	49.01												-						
Coal ————————————————————————————————————	50 .								Щ				50— - —						
mainly moderately strong	54.84																		
COAL, fresh SANDSTONE, MUDSTONE, fresh	54.84 55 55.05												55—						
Mainly COAL, fresh, broken	55.72																		
Mainly MUDSTONE, dark grey, — fresh, moderately weak — — — —	56.80												-						
Coal 60 EEE REMARKS:													60						
Cored hole N.A. Not Applicable											00415	4 400							
<u> </u>	ength UC	CS = 33	330e ^{-0.04}	^{199t} , where t = interval transi	t time (re	ciproca	l of vel	ocitv)	in microseco	onds per	SCALE LOGGEI								
	onic derived uniaxial compressive strength UCS = 3330e ^{-0.0499t} , where t = interval tot. Durability test: shake in water for 20 secs and assess, then immerse in water												Geologist						

CLIENT:					CORE TYPE:			LOCATION			BOREHOLE No:			
CENTRAL QUE	CENTRAL QUEENSLAND COAL PTY LTI					EPTH:		Ε	774 009.	.06	STX	050C		
SITE LOCATION / PURPOSE :	NEX	ТТО	BRU	CE HIGHWAY,	WATER DEPTH:	TABLE		N	7 485 907		SHEET	4 OF 7		
GEOTECHNICAL ASSES				,	LEVEL:			GR	OUND LEVEL (A 33.65	HD)	DRILLING 12/	DATE: /09/10		
DESCRIPTION OF CORE		GRAPHIC LOG	DUR- ABILITY	STRUCTURES JOINTS, BEDDING, VEINS,	SEVMS	∵ ₩	R.Q.D.		SONIC	DERIV	ED UNIAX	IAL		
ROCK TYPE, COLOUR, GRAIN SIZE	R.L. DEPTH		%	CRUSHED ZONES, FAL	ILTS	FRAC. PER METRE		1	COMPRES	SIVE S	0 80		+	
MUDSTONE, fresh Coal —	60.68			INDETERMINATE									-	
Mainly SANDSTONE, light grey, — fresh, mainly moderately strong —	62.65												-	
Core loss _														
-	64.12							П						
- - - -	65												65— - - -	
- - - -														
Core loss	69.77 70 70.12		•										70— - -	
_														
COAL, fresh, weak	72.66													
SANDSTONE, light grey, fresh, moderate to strong	74.60 75		•	Slickensides at 70°, pyrite									- 75— - -	
- - - - -													-	
REMARKS:	80	1				<u> </u>							80	
Cored hole														
N.A. Not Applicable											SCALE 1			
N.A. Not Applicable Sonic derived uniaxial compressive strength UCS = 3330e ^{-0.0499t} , where t = interval trace to the control of the contro						ciproca estima	l of vel te perc	ocity ent o) in microsecor disintegration.	nds per	LOGGED Geo	BY: ologist		

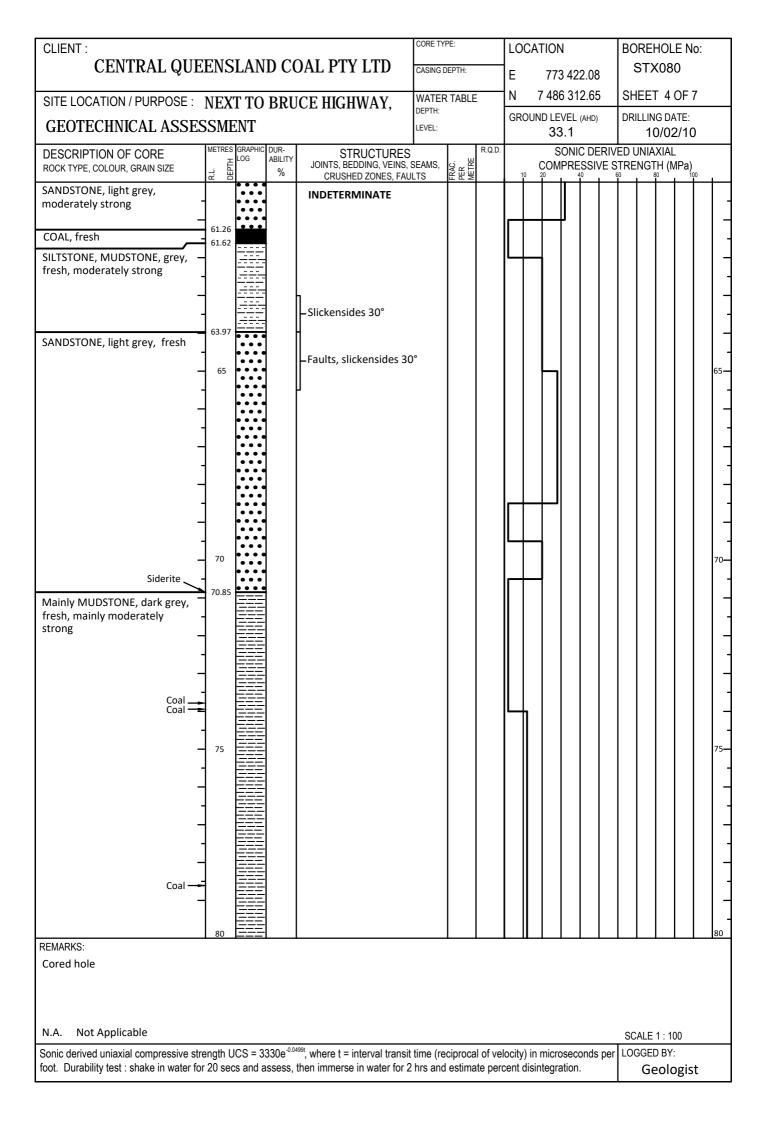
CLIENT:		CORE TYPE: LOCATION				BOREHOLE No:						
CENTRAL QUE	ENSLAND CO	OAL PTY LTD	CASING D	EPTH:		Е	774 0	09.06	STX	050C		
SITE LOCATION / PURPOSE :	NEXT TO BRI	ICE HIGHWAY.	WATER	TABLE		N	7 485 9	07.95	SHEET	6 OF 7		
GEOTECHNICAL ASSES		oz manym,	DEPTH: LEVEL:			GROL	ND LEVE		DRILLING 12	DATE: /09/10		
DESCRIPTION OF CORE ROCK TYPE, COLOUR, GRAIN SIZE	METRES GRAPHIC DUR- LOG ABILITY	STRUCTURES JOINTS, BEDDING, VEINS, CRUSHED ZONES, FAL	SEAMS,	FRAC. PER METRE	R.Q.D.	10	SON COMPR	IIC DERIV	YED UNIAX STRENGTH	IAL I (MPa)		
SANDSTONE, light grey, MUDSTONE, dark grey, fresh, moderately strong Coal Coal COAL SANDSTONE, light grey, MUDSTONE, dark grey, fresh, moderately strong COAL SANDSTONE, dark grey, fresh, moderately strong	1105	Slickensides at 60°									110 	
Cored hole												
N.A. Not Applicable								SCALE 1	: 100			
Sonic derived uniaxial compressive str foot. Durability test : shake in water for	^{499t} , where t = interval transit then immerse in water for 2	time (red	ciproca estima	of vel	ocity) in cent dis	n microse integratio	conds per n.		LOGGED BY: Geologist			

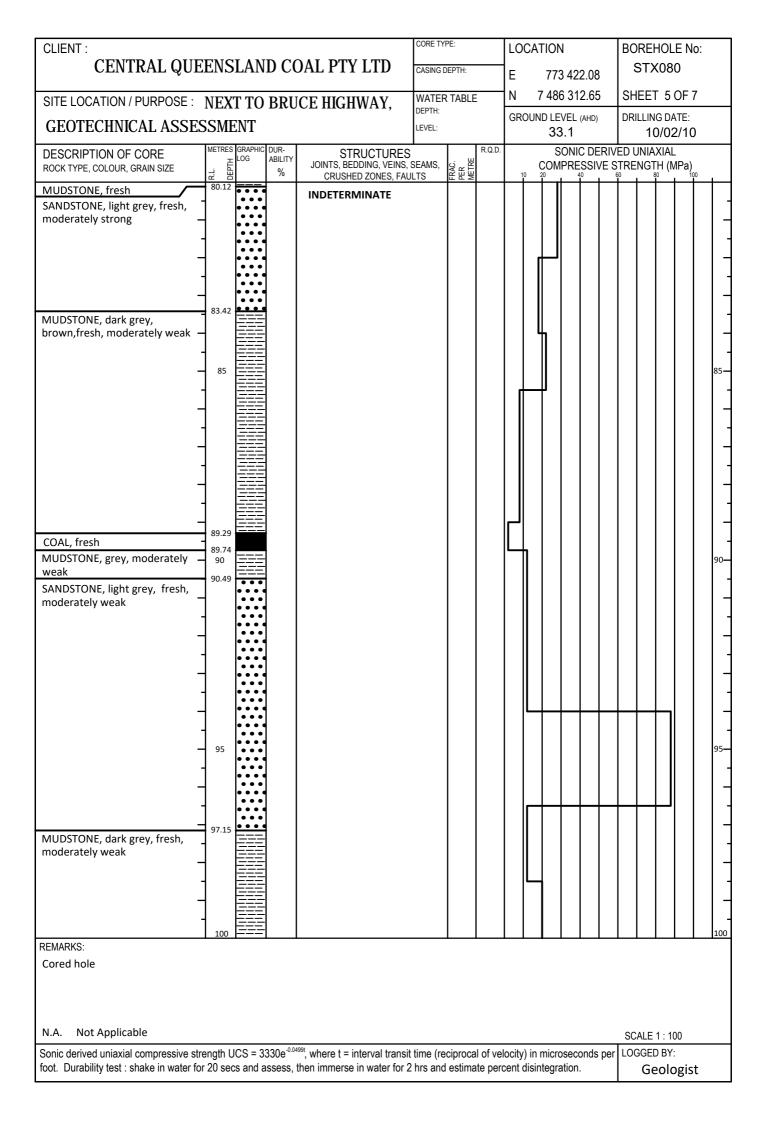
CLIENT:		LOCATION				BOREHOLE No:										
CENTRAL QUE	OAL PTY LTD	CASING D	EPTH:		Ε		774 00	9.06		STX	0500					
SITE LOCATION / PURPOSE :	NEX	T TO	BRU	CE HIGHWAY.	WATER	RTABLE		N	7	485 90)7.95	Sŀ	HEET	7 OF	7	
GEOTECHNICAL ASSES				<u></u>	DEPTH: LEVEL:			GR	OUNE	33.6		DR		DATE		
	METRES	GRAPHIC		STRI ICTI IRES	R.Q.D. SONIC I						VED		/09/1	10	_	
ROCK TYPE, COLOUR, GRAIN SIZE	R.L. DEPTH	LOG	ABILITY %	JOINTS, BEDDING, VEINS, CRUSHED ZONES, FAL	SEAMS, JLTS	FRAC. PER METRE		COMPRESSIVE							100	
DESCRIPTION OF CORE ROCK TYPE, COLOUR, GRAIN SIZE SANDSTONE, light grey, MUDSTONE, dark grey, fresh, moderately strong SILTSTONE, medium grey, MUDSTONE, dark brown Core loss Coal Co			ABILITY		SEAMS, JLTS	FRAC. PER METRE		1	0 200						100	125
-																-
_																-
- -																
-																
REMARKS:	140							Ш					Ш			140
N.A. Not Applicable Sonic derived uniaxial compressive stre	⁹⁹¹ , where t = interval transi	t time (re	ciproca	ıl of vel	locity) in m	nicrosec	conds pe		CALE 1						
		nsit time (reciprocal of velocity) in microsecond or 2 hrs and estimate percent disintegration.						Geologist								

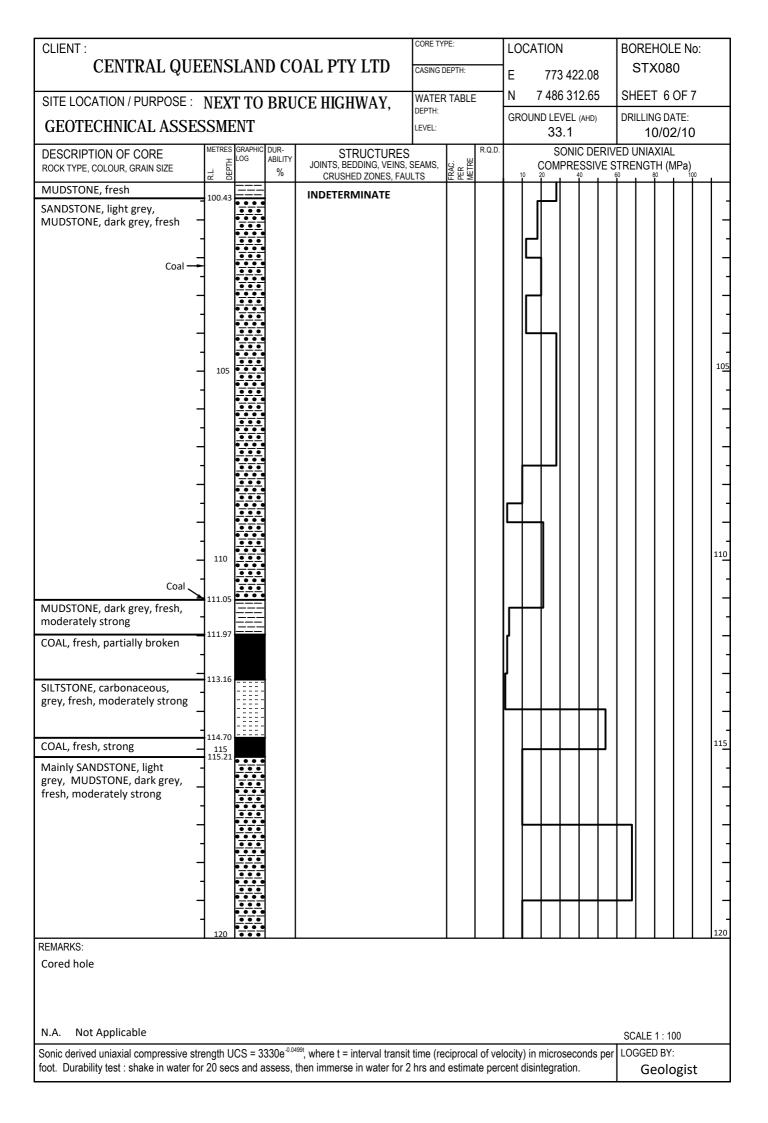
STX050C

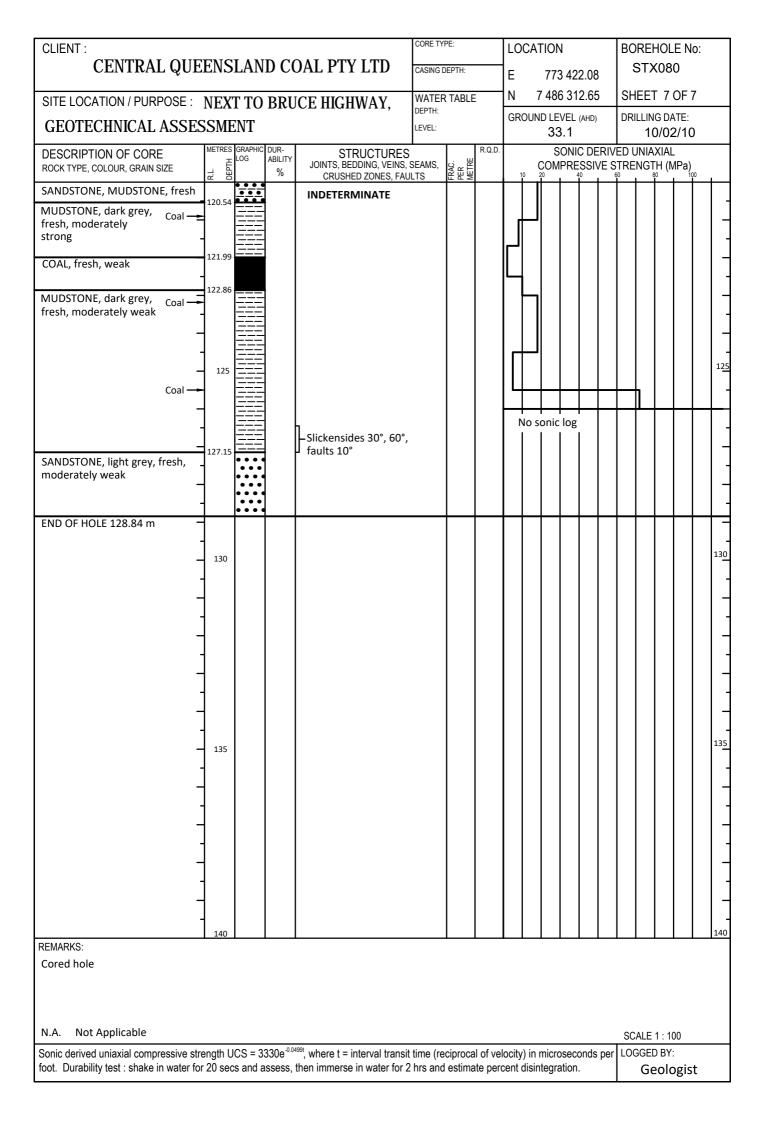
STX050C

STX050C

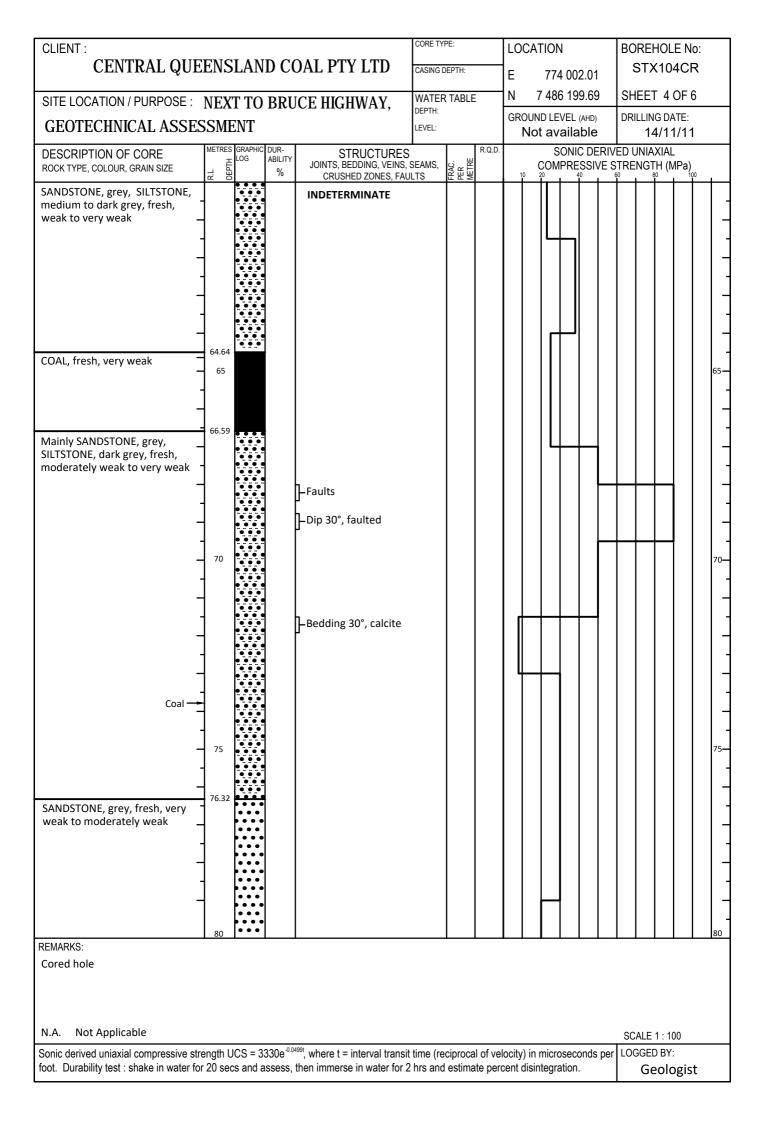





CLIENT:		CORE TYPE: LOCATION CASING DEPTH: E 773 422.08				BOREHOLE No:											
CENTRAL QUE	CENTRAL QUEENSLAND COAL PTY L							773	3 422.0	8	ST	X080)				
SITE LOCATION / PURPOSE :	NEXT 1	TO BRU	CE HIGHWAY.	WATER	TABLE		N	7 486	312.6	65	SHE	ET 10	OF 7				
GEOTECHNICAL ASSES			,	DEPTH: LEVEL:			GRO	UND LEV		D)		ING DA					
DESCRIPTION OF CORE	METRES GRA		STRUCTURES	05440	. щ	R.Q.D.		91	ONIC D	ERIV	ED HIVI	ΙΛΥΙΛΙ					
ROCK TYPE, COLOUR, GRAIN SIZE	R.L. DEPTH	%	JOINTS, BEDDING, VEINS, CRUSHED ZONES, FAL	SEAMS, ILTS	FRAC. PER METRE				PRESS	IVE S	IRENC	STH (M	Pa) 	+			
CLAY, orange brown, pughy CLAY, orange brown, pughy SANDSTONE, brownish, weathered CLAY, brown SANDSTONE, MUDSTONE, brown, weathered, weak	7.71	%		SEAMIO, ILTS	FRAG PER		1 No	o sonic	-		TRENCE 0	3 I H (M	Pa) 100	5 —			
- -											\Box	Ш		凵			
- - - -																	
CLAY, brown	19.91 20													20			
REMARKS: Cored hole N.A. Not Applicable Sonic derived uniquial compressive stre	⁹⁹¹ where t = interval tree = "	time /	oipross	l of vol	ocit.·\	in micro		s nor		E 1 : 10	0						
	onic derived uniaxial compressive strength UCS = 3330e ^{-0.0499t} , where t = interval tot. Durability test: shake in water for 20 secs and assess, then immerse in water													OGGED BY: Geologist			


CLIENT :			CORE TYPE: LOCATION			ION	BOREHOLE No:				
CENTRAL QUE	ENSLAND (COAL PTY LTD	CASING DEPTH	:	E	773 422.08	STX080				
SITE LOCATION / PURPOSE :	NEXT TO BR	RUCE HIGHWAY,	WATER TAE	BLE	N 7	486 312.65	SHEET 2 OF 7				
GEOTECHNICAL ASSES	SSMENT		LEVEL:			LEVEL (AHD) 33.1	DRILLING DATE: 10/02/10				
DESCRIPTION OF CORE ROCK TYPE, COLOUR, GRAIN SIZE	METRES GRAPHIC DUR- LOG ABILI	TY JOINTS BEDDING VEINS	SEAMS, SEAMS	R.Q.D.	C(SONIC DERIV	ETRENGTH (MPa)				
CLAY, SILT, brown		INDETERMINATE									
SANDSTONE, MUDSTONE, weathered CLAY, brown SANDSTONE, weathered COAL, weathered MUDSTONE, grey, slightly	21.02 21.63 22.48 23.02 23.55 23.55						- - - - - -				
weathered, broken SANDSTONE, light grey, fresh,	24,92	Base of weathering	ıg				25—				
weak to moderately weak	30	25.14	5				30—				
Cored hole											
N.A. Not Applicable							SCALE 1 : 100				
Sonic derived uniaxial compressive str foot. Durability test : shake in water for											

CLIENT:					LOCATION			E	BOREHOLE No:				
CENTRAL QUE	CENTRAL QUEENSLAND COAL PTY LTI						Е	773	422.08		STX	080	
SITE LOCATION / PURPOSE :	NEXT TO	BRU	CE HIGHWAY,	WATER DEPTH:	TABLE		N	7 486	312.65	5	SHEET	3 OF 7	
GEOTECHNICAL ASSES				LEVEL:			GRO	OUND LEV 33.			RILLING 10/	DATE: 02/10	
DESCRIPTION OF CORE	METRES GRAPHIC E LOG	DUR- ABILITY	STRUCTURES JOINTS, BEDDING, VEINS,	SEAMS	. H	R.Q.D.		SC	NIC DE	RIVE	UNIAX RENGTH	IAL (MDa)	
ROCK TYPE, COLOUR, GRAIN SIZE	R.L. DEPTH	%	CRUSHED ZONES, FAL	JLTS	FRAC. PER METRE		10		40	60		100	\dashv
SANDSTONE, light grey, fresh, mainly moderately weak Siderite MUDSTONE, grey, brown,fresh, moderately strong COAL, fresh, solid core SANDSTONE, light grey, moderately strong SANDSTONE, light grey, moderately strong	53.31		INDETERMINATE										45— 45—
REMARKS: Cored hole													
N.A. Not Applicable								Ş	SCALE 1	: 100			
Sonic derived uniaxial compressive stre	ength UCS = 3	330e ^{-0.04}	, where t = interval transi	t time (re	ciproca	l of vel	ocity)	in micros	econds		OGGED I	3Y:	
foot. Durability test: shake in water for	20 secs and	assess,	then immerse in water for 2	hrs and	estima	te perd	cent d	isintegrat	ion.	- 1	Geo	ologist	



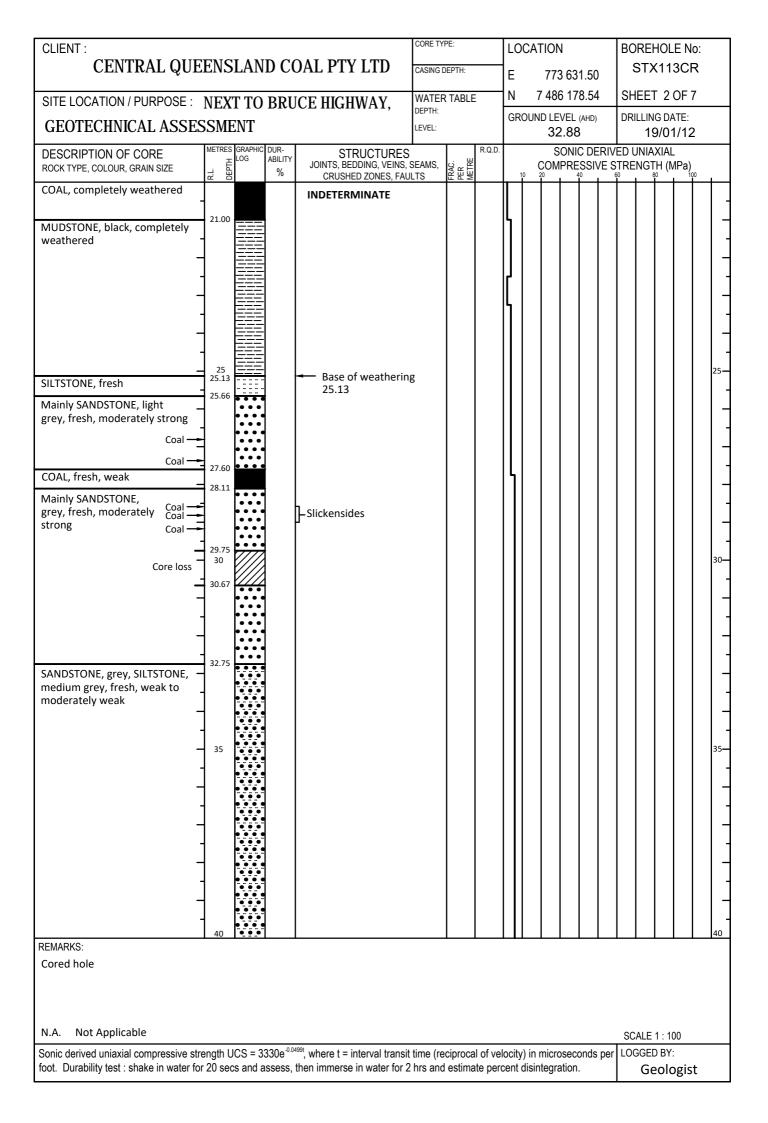
CLIENT:			- ~		CORE TY	PE:		LOCA	TION		1	EHOLE	
CENTRAL QUE	EENS	LAN	D C(OAL PTY LTD	CASING [DEPTH:		E	774 00	02.01	ST	X104	CR
SITE LOCATION / PURPOSE :	NEXT	Г ТО	BRU	ICE HIGHWAY.	WATER	R TABLE		N	7 486 19	99.69	SHEE	ET 10	F 6
GEOTECHNICAL ASSE				<u> </u>	DEPTH: LEVEL:				ND LEVEL ot availa			ING DAT 14/11/	
DESCRIPTION OF CORE	METRES	GRAPHIC	DUR-	STRUCTURE	 S	l	R.Q.D.		SUN	IC DEDIV	/ED LINI	ΙΛΥΙΛΙ	
ROCK TYPE, COLOUR, GRAIN SIZE	R.L. DEPTH	LOG	ABILITY %	JOINTS, BEDDING, VEINS CRUSHED ZONES, FA	S, SEAMS,	FRAC. PER METRE		. .	COMPRI	ESSIVE S	STRENC	STH (MP	Pa)
No record				INDETERMINATE	.02.0			-	I I sonic log	+ +		\top	
_	_												
	-												
-	-												-
	1												
-]												
	4												
	-												
-	- 5												5 -
_													
										-			
-]												
													-
	-												
-	10												10-
_]												
	-												
-	-												-
	-												
•]												-
	_												
	-												
-	15												15-
	1												
]												
	-												-
]												-
]												-
	-												
REMARKS:	20					<u> </u>	l						20
Cored hole													
N.A. Not Applicable			000 000	1001								E 1 : 100	ı
Sonic derived uniaxial compressive str foot. Durability test: shake in water for	rength U(or 20 secs	CS = 3 s and a	პპ0e ^{აა} issess,	then immerse in water for	sit time (re 2 hrs and	ciproca I estima	n ot vel ate per	locity) in cent disi	microsed ntegration	conds pei 1.		_{ED BY:} Geolog	gist

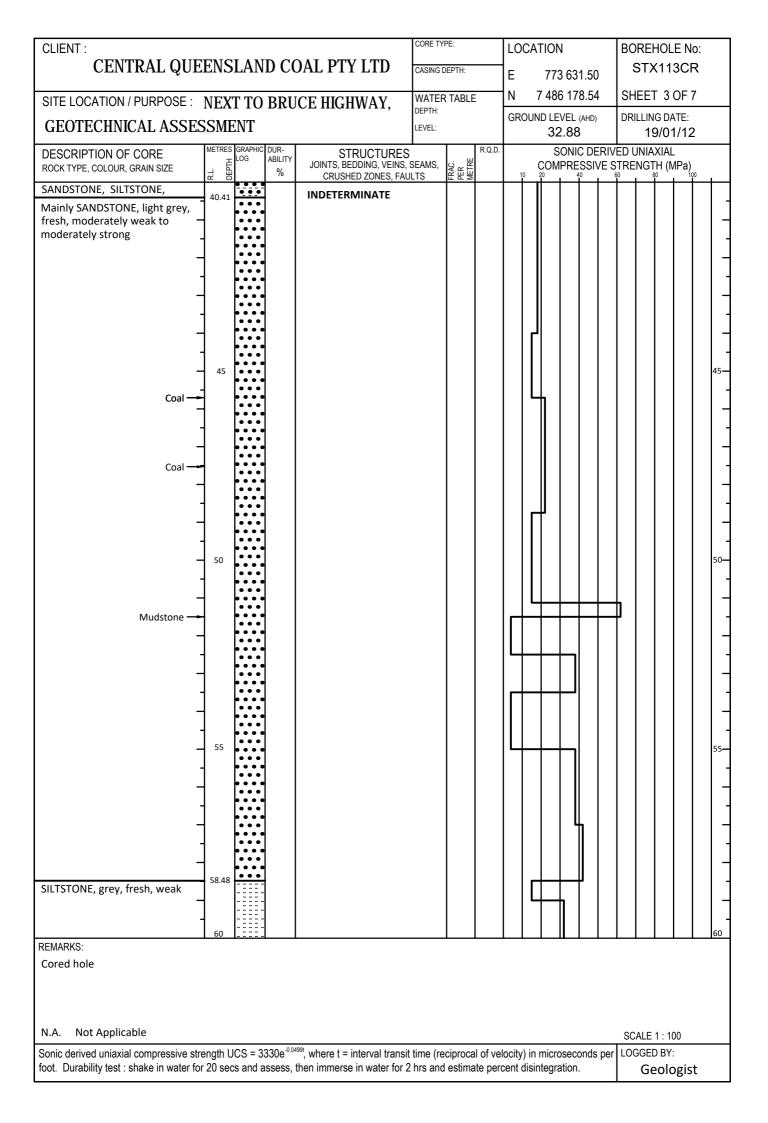
CLIENT :					CORE TY	PE:		LO	CATION			BOR	REHOI	_E No	:
CENTRAL QUE	ENS	LAN	D CO	OAL PTY LTD	CASING D	EPTH:		Ε	774	002.0	1	S	TX10	4CR	1
SITE LOCATION / PURPOSE :	NEX	T TO	BRU	CE HIGHWAY.	WATER	TABLE	<u> </u>	N	7 486	199.6	9	SHE	ET 2	OF 6	
GEOTECHNICAL ASSES				,	DEPTH: LEVEL:				OUND LEV				LING D 14/1		
DESCRIPTION OF CORE ROCK TYPE, COLOUR, GRAIN SIZE	R.L. DEPTH	GRAPHIC LOG	DUR- ABILITY	STRUCTURES JOINTS, BEDDING, VEINS,	SEAMS,	FRAC. PER METRE	R.Q.D.	10	SOMI	ONIC D	EDI\/	ED I IV	ΙΙΛΥΙΛ	1	
No record	<u> </u>			CRUSHED ZONES, FAL)LIO	<u>u a ></u>			o sonic	$\overline{}$	T	Ť			
SANDSTONE, light grey, fresh, moderately weak	23.85														25-
Core loss —= SILTSTONE, medium grey,	29.14														-
SANDSTONE, light grey, fresh, weak to moderately weak Coal	30														30—
- - - - - - - - -	40														- - - - - 40
Cored hole															
N.A. Not Applicable Sonic derived uniaxial compressive str	enath I	ICS = 3	330e ^{-0.04}	99t. where t = interval transi	t time (re	ciproca	of vel	ocitv') in micro	second	s ner		LE 1 : 1 GED BY		
foot. Durability test : shake in water for	20 sec	cs and a	ssess,	then immerse in water for 2	2 hrs and	estima	ate perc	ent o	lisintegra	tion.	ا م		Geol		

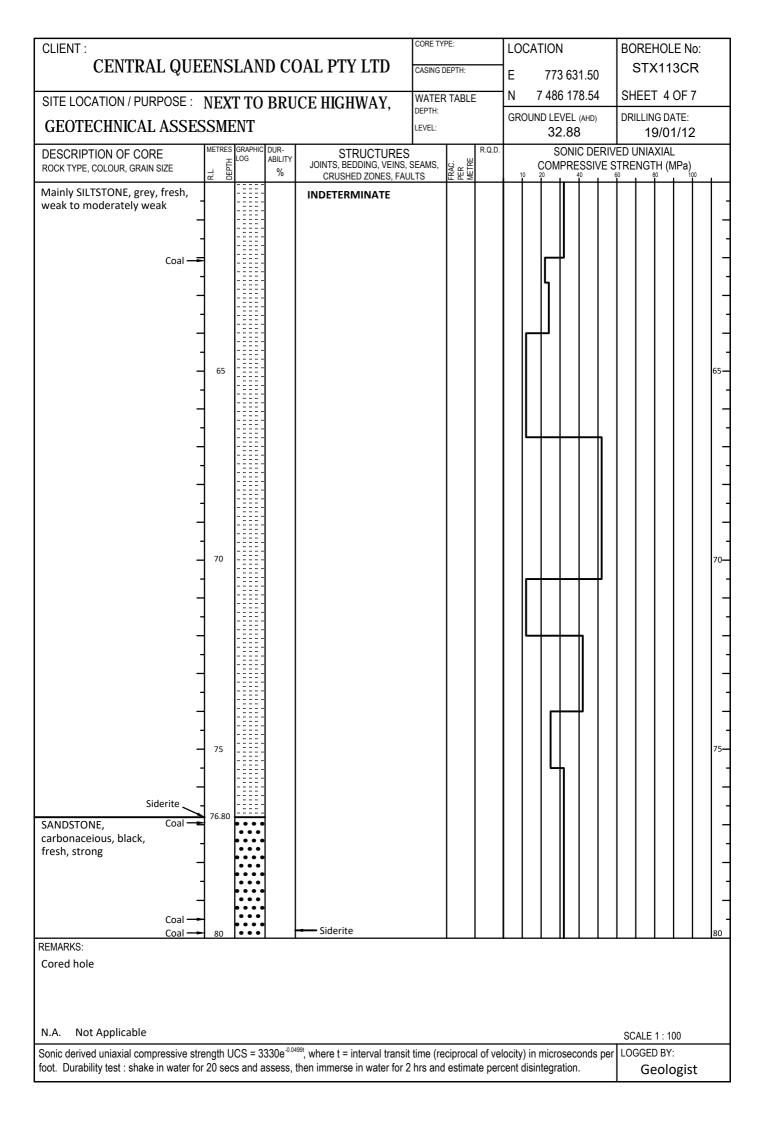
CLIENT :			CORE TYP	PE:		LOCA	TION		BOREHOLE N	lo:
CENTRAL QUE	ENSLAND CO	OAL PTY LTD	CASING D	EPTH:		E	774 002.01		STX104C	R
SITE LOCATION / PURPOSE :	NEXT TO BRU	CE HIGHWAY,	WATER DEPTH:	TABLE		N	7 486 199.69		SHEET 5 OF	6
GEOTECHNICAL ASSES	SSMENT	,	LEVEL:				ND LEVEL (AHD) ot available		DRILLING DATE: 14/11/1	
DESCRIPTION OF CORE ROCK TYPE, COLOUR, GRAIN SIZE	METRES GRAPHIC DUR- LOG ABILITY	STRUCTURES JOINTS, BEDDING, VEINS, CRUSHED ZONES. FAL	SEAMS,	FRAC. PER METRE	R.Q.D.	10	SONIC DE	ERIVE	D UNIAXIAL)
SANDSTONE, light grey, fresh, weak to moderately weak Coal MUDSTONE, fresh SILTSTONE, medium grey, Coal fresh, moderately weak Coal REMARKS: Cored hole	90 91.67 ====	INDETERMINATE INDETERMINATE	JLTS	FRA PEG						90—
N.A. Not Applicable									SCALE 1: 100	
Sonic derived uniaxial compressive stre								per	LOGGED BY:	
foot. Durability test: shake in water for	ZU secs and assess,	tnen immerse in water for 2	nrs and	estima	te perc	ent disi	ntegration.	- 1	Geologis	st

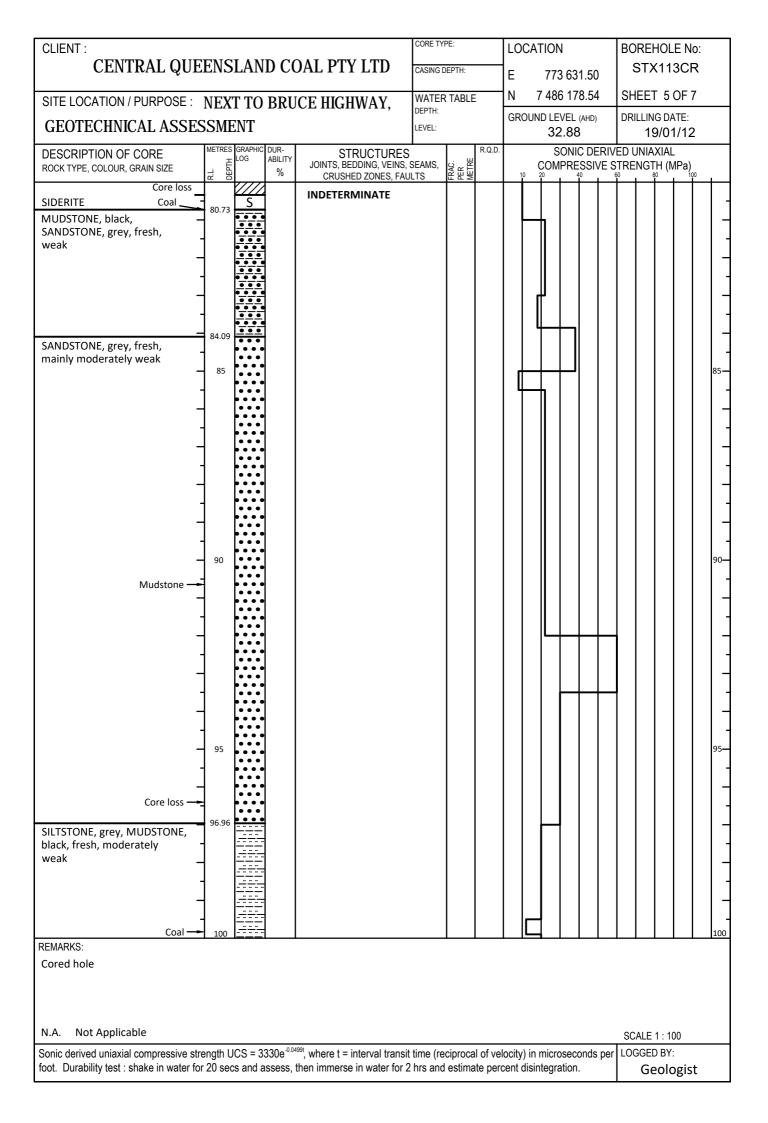
CLIENT:					CORE TY	PE:		LOCATION	BOREHOLE No:
CENTRAL QUE	ENS	LAN	D C	OAL PTY LTD	CASING D	EPTH:		E 774 002.01	STX104CR
SITE LOCATION / PURPOSE :	NEX'	ТТО	BRU	CE HIGHWAY,	WATER DEPTH:	RTABLE			SHEET 6 OF 6
GEOTECHNICAL ASSES	SSME	ENT			LEVEL:			GROUND LEVEL (AHD) Not available	DRILLING DATE: 14/11/11
DESCRIPTION OF CORE ROCK TYPE, COLOUR, GRAIN SIZE	R.L. DEPTH SELEM	GRAPHIC LOG	DUR- ABILITY	STRUCTURES JOINTS, BEDDING, VEINS, CRUSHED ZONES, FAL	SEAMS, JLTS	FRAC. PER METRE	R.Q.D.	SONIC DERIVE COMPRESSIVE ST	D UNIAXIAL RENGTH (MPa)
SILTSTONE, medium grey, fresh, moderately weak	101.63			INDETERMINATE					-
COAL, fresh, weak Core loss —	102.40							4-	
SANDSTONE, grey, SILTSTONE, medium grey, fresh, moderately weak	102.40								
- - -	105								10 <u>5</u>
- -	107.60								
Not logged									-
- -	110							No sonic log	110
END OF HOLE 110.60 m	115								1115
N.A. Not Applicable									
N.A. Not Applicable Sonic derived uniaxial compressive stre	enath U	CS = 3	330e ^{-0.04}	199t, where t = interval transi	t time (re	ciproca	l of vel	ocity) in microseconds per	SCALE 1 : 100 LOGGED BY:
foot. Durability test: shake in water for	20 sec	s and a	issess,	then immerse in water for 2	2 hrs and	estima	ite perc	ent disintegration.	Geologist

STX104CR

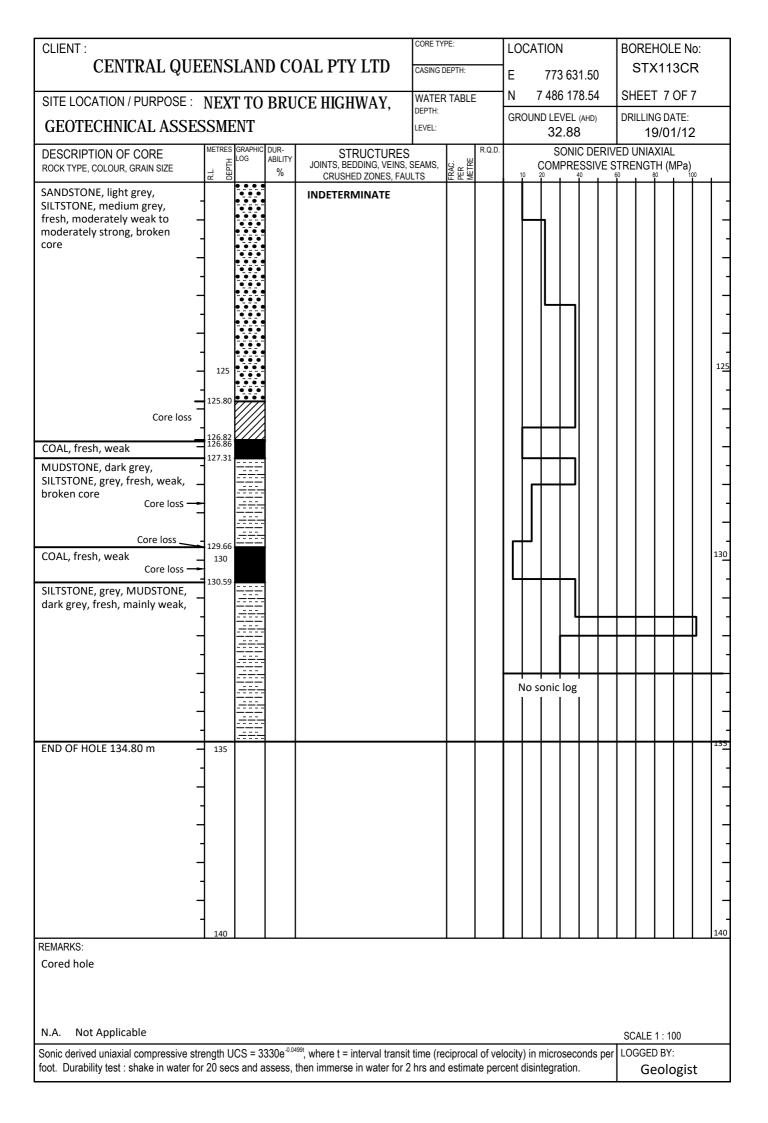

STX104CR







CLIENT:		CORE IY	PE:		LOC	OITA	N					IOLE					
CENTRAL QUE	ENS	LAN	D CO	OAL PTY LTD	CASING D	EPTH:		Ε	77	3 63	1.50		5	STX	113	CR	
SITE LOCATION / PURPOSE :	NEX	T TO	BRU	CE HIGHWAY.	WATER	RTABLE		N	7 48	6 17	8.54		SH	EET	10	F 7	
GEOTECHNICAL ASSES				,	DEPTH: LEVEL:			GRO	UND LE	VEL 2.88			DRII		G DAT		
DESCRIPTION OF CORE		GRAPHIC LOG	DUR- ABILITY	STRUCTURES	<u> </u>	ш	R.Q.D.		-	:ONI		RIV	ED U	INIIAN	/I / I		
ROCK TYPE, COLOUR, GRAIN SIZE	R.L.		%	JOINTS, BEDDING, VEINS, CRUSHED ZONES, FAL	SEAMS, JLTS	FRAC. PER METRE		L.,	CON	IPRE	SSI\	/ES ⊢—¦i	IREI ⊩⊢	NG II	H (MF	'a) 100	
CLAY, brown, sticky	-			INDETERMINATE				No No	sonic	log							
-	1																$\mid \dashv$
· _																	
-	-																$\mid \cdot \mid$
	1																-
- -																	
-	5																5 —
	1	• • •	-														
-																	
_																	
-	1																-
·																	
			-														
-	10																10—
	 																-
SILT, brown, loose	11.00																
-	-																
	-																-
-	1																
<u>-</u>																	
	1		-														-
SANDSTONE, brown, friable,	15	• • • •	•														15—
completely weathered		• • • •	1														
	1	•	•														
-	-	• • •															-
			•														
-	-																$\mid \cdot \mid$
	20		•						+						+	+	20
REMARKS:	,	•	•			•				-		!					<u>,=</u> ,
Cored hole																	
N.A. Not Applicable													90	ΔI ⊏ 1	1 : 100)	
Sonic derived uniaxial compressive str												per		GED			
foot. Durability test : shake in water fo														Ge	olog	gist	



CLIENT:	CORE TYP	E:		LOCATION	BOREHOLE No:
CENTRAL QUEENSLAND COAL PTY LTD	CASING DI	EPTH:		E 773 631.50	STX113CR
SITE LOCATION / PURPOSE : NEXT TO BRUCE HIGHWAY,	WATER	TABLE		N 7 486 178.54	SHEET 6 OF 7
GEOTECHNICAL ASSESSMENT	DEPTH: LEVEL:			GROUND LEVEL (AHD) 32.88	DRILLING DATE: 19/01/12
DESCRIPTION OF CORE METRES GRAPHIC DUR- STRUCTURES ABILITY COUNTS PERDING VEHICL	CEAMO	.: W	R.Q.D.	SUNIC DEDIV	I (ED LINIAYIAI
ROCK TYPE, COLOUR, GRAIN SIZE Joints, Bedding, Veins, Crushed Zones, Fau	LTS	FRAC. PER METRE		COMPRESSIVE S	STRENGTH (MPa)
SILTSTONE, MUDSTONE INDETERMINATE					
101.44]
SANDSTONE, light grey, SILTSTONE, medium grey,					
fresh, mainly moderately weak, broken core					
]
-					-
105					105
					1
]
					┞┧╎╎╎┤
					┝┩╎╎╎╗
-					
110					_ 110
]
-					$ \ \ \ \ \ \ $
-					
					$ \ \ \ \ \ \ $
					!
Core loss — 115]
-					
				▎▕ ▕ ┼┦┊	
- • • • • • • • • • • • • • • • • • • •					-
					$ \ \ \ \ \ \ $
Core loss 119.39					120
REMARKS:			•		. , , , , , , , , , , , , , , , , , , ,
Cored hole					
N.A. Not Applicable					SCALE 1: 100
Sonic derived uniaxial compressive strength UCS = 3330e ^{-0.0499t} , where t = interval transit foot. Durability test: shake in water for 20 secs and assess, then immerse in water for 2	time (red	ciproca estima	of vel	ocity) in microseconds per cent disintegration.	
The state of the s					GCOIOGIST

STX113CR

CLIENT:		CONL III	L.		ĮLΟ	CAT	ION				REH			:			
CENTRAL QUE	ENS	LAN	D CC	OAL PTY LTD	CASING D	EPTH:		E		774 1	53.54	1	5	STX	.120)	
SITE LOCATION / PURPOSE :	NFX	T TO	BRII	CF HICHWAY	WATER	TABLE		N	7	485 9	01.99	9	SH	EET	10)F 1	0
GEOTECHNICAL ASSES			Dico	CL manwai,	DEPTH: LEVEL:			GR	OUNE	LEVEL)	DRI	LLINC			
		GRAPHIC	DUR-				R.Q.D.			34.0)/03	/11	
DESCRIPTION OF CORE ROCK TYPE, COLOUR, GRAIN SIZE	R.L.		ABILITY	STRUCTURES JOINTS, BEDDING, VEINS, CRUSHED ZONES, FAI	SEAMS, JLTS	FRAC. PER METRE			C 20	OMPR	ESSI'	ERIV VE S	TRE	JNIAX NGTI	H (MI	Pa)	
CLAY, brown				INDETERMINATE				No	son	ic log							
-	-																-
	-																-
-																	-
•	1																1
_																	
-	5																5 —
•	1																
SAND, brown	6.00		1														
_																	
														-			
-	-																-
•																	1
-																	
_	10																10—
	ł																-
_	ł																-
•	1		1														
-			1														
_																	
•		•••															
_	1																-
•	15																15 —
-] 13																
_		•••															
-	1		1														-
•																	1
-		•••															
CLAV hassing	19.00	•••	↓														
CLAY, brown																	-
REMARKS:	20	<u>l. </u>	Ш			<u> </u>		Ш		_			Ш				20
Chip hole																	
N.A. Not Applicable													SC	ALE 1	1 : 100)	
Sonic derived uniaxial compressive stre foot. Durability test: shake in water for												per	LOC	GED		nic+	
Darabinty toot . Grand in water to	_0 000	uiiu (,	water 101 /	0 and	5561110	por	JJ: 11 1	اااند	-9.41101			l	96	olo	გიას	

CLIENT:		CORE TY	PE:		LOC	ATION		1	EHOLI					
CENTRAL QUE	ENS	LAN	D C(OAL PTY LTD	CASING D	EPTH:		E	774 1	53.54	SI	TX120)	
SITE LOCATION / PURPOSE :	NEX	ТТО	BRU	CE HIGHWAY.	WATER	TABLE		N	7 485 9	01.99	SHE	ET 20)F 10	
GEOTECHNICAL ASSES				,	DEPTH: LEVEL:			GRO	UND LEVE 34.0			ING DA' 10/03		
DESCRIPTION OF CORE ROCK TYPE, COLOUR, GRAIN SIZE	R.L. DEPTH		DUR- ABILITY	STRUCTURES JOINTS, BEDDING, VEINS, CRUSHED ZONES, FAL	SEAMS,	FRAC. PER METRE	R.Q.D.	10		IIC DERIVES			Pa)	
CLAY, brown	-			INDETERMINATE	-				sonic log					-
SAND, brown	22.00			■ Base of weathering	a									
SILTSTONE, grey, SANDSTONE, grey, fresh	25.54			23.50	g									_ - 25—
- -	-													-
- - -	- 30 - 30 													30—
- - -	35													- 35— - -
MUDSTONE, dark grey, SILTSTONE, grey, fresh,	37.00													- - - - 40
REMARKS: Chip hole	,							· ·	, ,		'	-	•	1.5
N.A. Not Applicable		100 0	220 ⁰ 0/	99t 	Lillian - 1		1 - 5 - 5	la a li N	ta aster	I-		E 1 : 10	0	
Sonic derived uniaxial compressive str foot. Durability test : shake in water fo												ED BY: G <mark>eolo</mark>	gist	

CLIENT:		CORE TYP	PE:		LOC	ATION				REHOL		:			
CENTRAL QUE	ENSL	LAND	CC	OAL PTY LTD	CASING D	EPTH:		Е	774	153.54	1	S	TX12	0	
SITE LOCATION / PURPOSE :	NEXT	TO B	RU	CE HIGHWAY.	WATER	TABLE		N	7 485	901.99	9	SHE	ET 3	OF 1	0
GEOTECHNICAL ASSES				02 man,,,	DEPTH: LEVEL:			GRO	UND LEVE)		ING DA		
DESCRIPTION OF CORE	METRES G	RAPHIC DU		STRUCTURES			R.Q.D.				ERIVI		IO/O.		
ROCK TYPE, COLOUR, GRAIN SIZE	R.L. DEPTH		%	JOINTS, BEDDING, VEINS, CRUSHED ZONES, FAU	SEAMS, LTS	FRAC. PER METRE		10	COMP						
MUDSTONE, dark grey, SILTSTONE, grey, fresh	45			INDETERMINATE	LIS	FI P			Sonic lo	g					45—
SANDSTONE, grey, fresh	51.00														-
MUDSTONE, grey, fresh	53.50														
SANDSTONE, light grey, fresh	54.64 55														- 55— - - - -
COAL, fresh	59.69 60	•••											丄		60
REMARKS: Chip hole N.A. Not Applicable								LE 1 : 1							
Sonic derived uniaxial compressive stre foot. Durability test : shake in water for											s per		GED BY		

CLIENT:	CORE TYP	PE:		LOCA	ATION		BORE	HOLE No	o:
CENTRAL QUEENSLAND COAL PTY LTD	CASING D	EPTH:		Е	774 1	53.54	ST	(120	
SITE LOCATION / PURPOSE : NEXT TO BRUCE HIGHWAY,	WATER	TABLE		N	7 485 9	01.99	SHEE	Γ 4 OF 1	0
GEOTECHNICAL ASSESSMENT	DEPTH: LEVEL:			GROU	ND LEVEL			G DATE: 0/03/11	
DESCRIPTION OF CORE ROCK TYPE, COLOUR, GRAIN SIZE METRES GRAPHIC DUR-ABILITY LOG ABILITY 9 JOINTS, BEDDING, VEINS, CRUSHED ZONES, FAL	SEAMS, ILTS	FRAC. PER METRE	R.Q.D.	10	SON COMPR	IC DERI\ ESSIVE S	/ED UNIA STRENGT	XIAL H (MPa))
COAL, fresh INDETERMINATE				No s	onic log				-
MUDSTONE, dark grey, SILTSTONE, grey, fresh SANDSTONE, light grey, SILTSTONE, medium grey, fresh - 70 - 75 - 75 - 75 - 75									65—
COAL, fresh									-
SANDSTONE, MUDSTONE, light grey, SILTSTONE, medium grey, fresh									- - - 80
REMARKS: Chip hole N.A. Not Applicable Sonic derived uniaxial compressive strength UCS = 3330e ^{-0.0499t} , where t = interval transifoot. Durability test: shake in water for 20 secs and assess, then immerse in water for 20 secs.									

CLIENT:			CORE TYPE	≣:		LOCATION		BOREHOL	
CENTRAL QUE	ENSLAND CO	OAL PTY LTD	CASING DE	PTH:		E 774 1	53.54	STX12	0
SITE LOCATION / PURPOSE :	NEXT TO BRU	CE HIGHWAY.	WATER	TABLE	\dashv	N 7 485 9	01.99	SHEET 5	OF 10
GEOTECHNICAL ASSES		,	DEPTH: LEVEL:			GROUND LEVE 34.0		DRILLING DA 10/03	
DESCRIPTION OF CORE	METRES GRAPHIC DUR- LOG ABILITY	STRUCTURES	054440		Q.D.	SON	IIC DERIV	<u>L</u> ED UNIAXIAL	
ROCK TYPE, COLOUR, GRAIN SIZE	LOG ABILITY %	JOINTS, BEDDING, VEINS, CRUSHED ZONES, FAL	SEAMS, S	PER METRE	_	10 20	40	TRENGTH (M	1Pa) 100 1 1 1 1
SANDSTONE, light grey, SILTSTONE, medium grey, fresh		INDETERMINATE				No sonic log			-
SHALE, MUDSTONE, fresh	87.69								85— - - - -
SANDSTONE, light grey, SILTSTONE, grey, fresh	95								90—
SHALE, MUDSTONE, fresh -	100								100
REMARKS: Chip hole N.A. Not Applicable Sonic derived uniaxial compressive str	ength UCS = 3330e ^{-0.04}	³⁹¹ , where t = interval transit	time (reci	iprocal o	f velo	ocity) in microse	conds per	SCALE 1 : 10 LOGGED BY:	
foot. Durability test : shake in water for								Geolo	

CLIENT:					CORE TY	PE:		LO	CATION	1		ВС	REH	OLE N	lo:	
CENTRAL QUE	ENS	LAN	D CC	OAL PTY LTD	CASING D	EPTH:		Ε	774	1 153	3.54		STX	120		
SITE LOCATION / PURPOSE :	NEX	ТТО	BRU	CE HIGHWAY.	WATER	RTABLE		N	7 48	5 90´	1.99	SH	HEET	6 OF	10	
GEOTECHNICAL ASSES				,	DEPTH: LEVEL:			GRO	OUND LE 34	VEL (1.08		DR		DATE: /03/1		
DESCRIPTION OF CORE ROCK TYPE, COLOUR, GRAIN SIZE	R.L. DFPTH	GRAPHIC LOG	DUR- ABILITY %	STRUCTURES JOINTS, BEDDING, VEINS CRUSHED ZONES, FA	S , SEAMS, ULTS	FRAC. PER METRE	R.Q.D.	10	S COM	ONIC PRES	DER SSIVE	STRE	UNIAX ENGTH	(IAL H (MPa) 100	1
MUDSTONE, dark grey, fresh				INDETERMINATE				No	sonic I	og						-
COAL, fresh	101.53															
SANDSTONE, grey, MUDSTONE, fresh	105															105
SANDSTONE, grey, SILTSTONE, dark grey, fresh -	107.82															- - - 11 <u>0</u>
MUDSTONE, SHALE, fresh	111.35															-
	113.11															
COAL, fresh Siderite																
MUDSTONE, dark grey, SILTSTONE, grey, fresh Siltstone	114.24															115
REMARKS: Chip hole																
N.A. Not Applicable Sonic derived uniaxial compressive stre	enath I	ICS = 3	330e ^{-0.04}	1991 where t = interval trans	it time (re	ciproca	l of vel	ocity)	in micro	Seco	nds n		GGED			
foot. Durability test: shake in water for											iius pt	<u></u>		ologi	st	

CLIENT:				CORE TY	PE:		LOC	ATION		BOREHOLE No:				
CENTRAL QUE	ENSLANI	D CO	OAL PTY LTD	CASING D	EPTH:		E	774 1	53.54	ST	STX120			
SITE LOCATION / PURPOSE :	NEXT TO	BRU	CE HIGHWAY.	WATER	TABLE		N	7 485 9	01.99	SHEE	T 701	F 10		
GEOTECHNICAL ASSES			,	DEPTH: LEVEL:			GRO	UND LEVEL 34.0			NG DATE 0/03/			
DESCRIPTION OF CORE		DUR- ABILITY	STRUCTURES			R.Q.D.		SON	IC DERIV	ED UNIA	AXIAL		_	
ROCK TYPE, COLOUR, GRAIN SIZE	R.L. DEPT	%	JOINTS, BEDDING, VEINS, CRUSHED ZONES, FAU	SEAMS, LTS	FRAC. PER METRE		10	COMPR	ESSIVE S	STRENG	TRENGTH (MPa)			
MUDSTONE, dark grey, SILTSTONE, medium grey, fresh	130		INDETERMINATE				-	sonic log					125 130 135 	
COAL, fresh	137.87												-	
MUDSTONE, fresh	139.00												_ - 140	
REMARKS:		<u> </u>												
Chip hole N.A. Not Applicable										SCALE	E 1 : 100			
Sonic derived uniaxial compressive stre	ength UCS = 33	30e ^{-0.049}	^{9t} , where t = interval transit	time (re	ciproca	l of vel	ocity) i	in microsed	conds per					
		ter for 2 hrs and estimate percent disintegration.								gist				

CLIENT:					CORE TY	PE:		LOC	CATION			BOREHOLE No:					
CENTRAL QUE	ENS	LAN	D CC	OAL PTY LTD	CASING D	EPTH:		E	774	153.54	.	S	TX12	0			
SITE LOCATION / PURPOSE :	NEX	ТТО	BRU	CE HIGHWAY.	WATER	TABLE		N	7 485	901.99	9	SHE	ET 8	OF 1	0		
GEOTECHNICAL ASSES				,	DEPTH: LEVEL:			GRO	UND LEV 34.				ING DA				
DESCRIPTION OF CORE ROCK TYPE, COLOUR, GRAIN SIZE	R.L. DEPTH		DUR- ABILITY %	STRUCTURES JOINTS, BEDDING, VEINS, CRUSHED ZONES, FAU	SEAMS, LTS	FRAC. PER METRE	R.Q.D.	10	COMP	NIC DE RESSI							
MUDSTONE, SILTSTONE, fresh				INDETERMINATE				No 	sonic lo	g					-		
COAL, fresh	141.15 141.58		•														
MUDSTONE, dark grey, SILTSTONE, grey, fresh	145														145		
- - - Siderite -	150 150.61														- - - 150		
COAL, fresh																	
MUDSTONE, SILTSTONE, fresh	151.18														-		
COAL, fresh	1																
SANDSTONE, grey, fresh	153.90 155														- 15 <u>5</u>		
COAL, fresh -	155.78														-		
SILTSTONE, fresh	156.83 157.23																
COAL, fresh SANDSTONE, SILTSTONE, grey, fresh	157.62														-		
REMARKS:	160	<u>"•" • "•</u> "	ш					щ			ш			Щ	160		
Chip hole N.A. Not Applicable	enath I	CS = 3	33∩e ^{-0.04}	⁹⁹¹ where t = interval transit	time (re	ciproca	l of vel	Ocity	in micros	econde	ner		_E 1 : 10				
		transit time (reciprocal of velocity) in microseconds per LOGGED BY: er for 2 hrs and estimate percent disintegration. Geolo															

CLIENT:			CORE TYPE:		LOCATION	BOREHOLE No:					
CENTRAL QUE	ENSLAND C	OAL PTY LTD	CASING DEPTH	ł:	E 774 153.54	STX120					
SITE LOCATION / PURPOSE :	NEXT TO BRI	JCE HIGHWAY.	WATER TAI	BLE	N 7 485 901.99	SHEET 9 OF 10					
GEOTECHNICAL ASSES		, , , , , , , , , , , , , , , , , , , ,	DEPTH: LEVEL:		GROUND LEVEL (AHD) 34.08	DRILLING DATE: 10/03/11					
DESCRIPTION OF CORE ROCK TYPE, COLOUR, GRAIN SIZE	METRES GRAPHIC DUR- LOG ABILITY	STRUCTURES JOINTS, BEDDING, VEINS,	SEAMS, S	R.Q.D.	COMPRESSIVE	VED UNIAXIAL STRENGTH (MPa)					
DESCRIPTION OF CORE ROCK TYPE, COLOUR, GRAIN SIZE SANDSTONE, grey, SILTSTONE, medium grey, fresh	METRES GRAPHIC DURABILITY % 165 177 177.88	STRUCTURES JOINTS, BEDDING, VEINS, CRUSHED ZONES, FAI INDETERMINATE	SEAMS, 💆								
Cilip Hole											
N.A. Not Applicable						SCALE 1 : 100					
			I transit time (reciprocal of velocity) in microseconds per LOGGED E ter for 2 hrs and estimate percent disintegration.								

CLIENT:								LOC	CATION		BOREHOLE No:					
CENTRAL QUE	ENS	LAN	D C	OAL PTY LTD	CASING D	EPTH:		Е	774 ′	153.54		ST	STX120			
SITE LOCATION / PURPOSE :	NEX	T TO	BRU	CE HIGHWAY.	WATER	RTABLE	<u> </u>	N 7 485 901.99				SHEET 10 OF 10				
GEOTECHNICAL ASSES				,	DEPTH: LEVEL:			GROUND LEVEL (AHD) 34.08				DRILLING DATE: 10/03/11				
DESCRIPTION OF CORE ROCK TYPE, COLOUR, GRAIN SIZE	R.L. DEPTH		DUR- ABILITY	STRUCTURES JOINTS, BEDDING, VEINS,	SEAMS,	FRAC. PER METRE	R.Q.D.		SOI	VIC DE						
SANDSTONE, grey, fresh	R.L.	• • •	70	CRUSHED ZONES, FAL	JLTS	FR PE		No	sonic log	40	60		80	100		
- - - - - -															-	
- - - - - -	185														18 <u>5</u>	
MUDSTONE, dark grey, fresh SANDSTONE, medium grey,	188.88 189.86 190														19 <u>0</u>	
SANDSTONE, medium grey, fresh	195														195	
- -																
	200														200	
REMARKS: Chip hole																
N.A. Not Applicable	anath I	IC6 - 3	330 ₂ -0.04	199t where t = interval transit	SCALE 1:											
		transit time (reciprocal of velocity) in microseconds per LOGGED or for 2 hrs and estimate percent disintegration.							ologist							

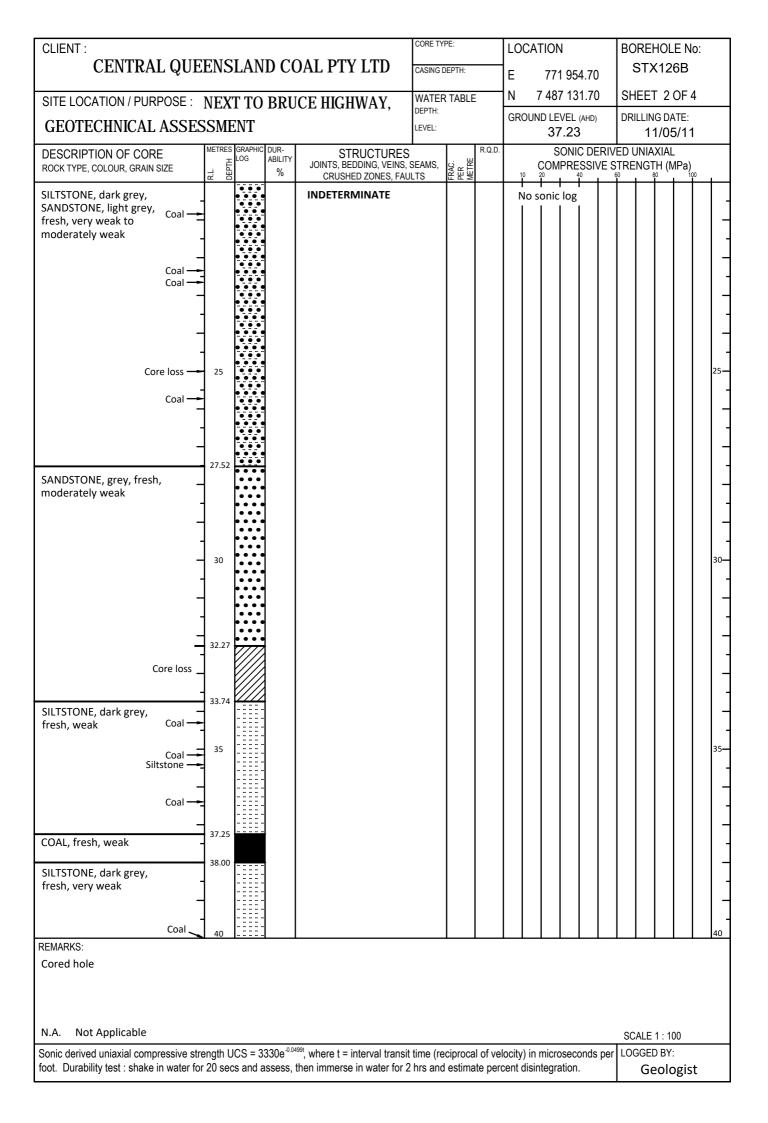
CLIENT:	ENTRAL QUEENSLAND COAL PTY LTD							LOCA	TION		- 1	BOREHOLE No:					
CENTRAL QUE	ENS	LAN	D CC	OAL PTY LTD	CASING D	EPTH:		E 772 998.69			;	STX124					
SITE LOCATION / PURPOSE :	NEX	ТТО	BRU	CE HIGHWAY.	WATER	RTABLE		N					SHEET 1 OF 4				
GEOTECHNICAL ASSES				,	DEPTH: GROUND LEVEL (AHD) LEVEL: 32.41						DRILLING DATE: 20/04/11						
DESCRIPTION OF CORE ROCK TYPE, COLOUR, GRAIN SIZE	R.L. DEPTH DEPTH		DUR- ABILITY %	STRUCTURES JOINTS, BEDDING, VEINS, CRUSHED ZONES, FAL	SEAMS, JLTS	FRAC. PER METRE	R.Q.D.			VED UNIAXIAL STRENGTH (MPa)							
SOIL, dark brown		*		INDETERMINATE				No s	sonic log					-			
CLAY, dark brown	2.00																
<u>-</u>	7.00													-			
SILT, light brown	- 10													- - - - 10—			
SAND, light grey	11.00													- - - - - 15- -			
CLAY, dark grey	17.00													- - - - - 20			
REMARKS: Cored hole	• =-	•						•	. 1	- 1	•			, -			
N.A. Not Applicable Sonic derived uniavial compressive str	anath I	ICS = 3	33∩≏ ^{-0.04}	99t where t = interval transit	time (ro	cinroco	l of vel	ocity) in	microsec	onde r		GGED					
		ransit time (reciprocal of velocity) in microseconds per conformed in time (reciprocal of velocity) in microseconds per conformed in time (reciprocal of velocity) in microseconds per conformed in time (reciprocal of velocity) in microseconds per conformed in time (reciprocal of velocity) in microseconds per conformed in time (reciprocal of velocity) in microseconds per conformed in time (reciprocal of velocity) in microseconds per conformed in time (reciprocal of velocity) in microseconds per conformed in time (reciprocal of velocity) in microseconds per conformed in time (reciprocal of velocity) in microseconds per conformed in time (reciprocal of velocity) in microseconds per conformed in time (reciprocal of velocity) in microseconds per conformed in time (reciprocal of velocity) in microseconds per conformed in time (reciprocal of velocity) in							ologis								

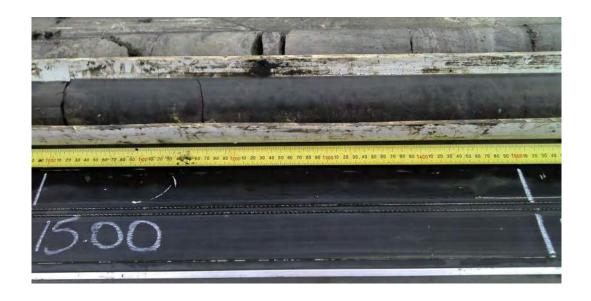
CLIENT :					CORE TY	PE:		LO	CATIO	N		- [BOREHOLE No:				
CENTRAL QUE	ENS	LAN	D CO	OAL PTY LTD	CASING D	EPTH:		Е	77	2 99	8.69		ST	X124	4		
SITE LOCATION / PURPOSE :	NEX	T TO	BRU	CE HIGHWAY,	WATER DEPTH:	TABLE		N 7 486 388.85					SHEET 2 OF 4				
GEOTECHNICAL ASSES				,	LEVEL:			GRO	OUND LE	EVEL 2.41				NG DA 2 <mark>0/0</mark> 4			
DESCRIPTION OF CORE ROCK TYPE, COLOUR, GRAIN SIZE	R.L. DEPTH	GRAPHIC LOG	DUR- ABILITY	STRUCTURES JOINTS, BEDDING, VEINS, CRUSHED ZONES, FAI	SEAMS, JLTS	FRAC. PER METRE	R.Q.D.	SONIC DERIN					VED UNIAXIAL STRENGTH (MPa)				
CLAY, dark grey				INDETERMINATE				N	o soni	clog							
- - -	23.06															-	
SILTSTONE, brown, MUDSTONE, black, slighty weathered, broken core																-	
SANDSTONE, grey, slightly ueathered to fresh, weak	25.04															25— - —	
Core loss ——————————————————————————————————			-	→ Base of weathering	g 26.60											-	
SILTSTONE, greyish brown, fresh, weak	29.60 30															30— -	
COAL, fresh Mudstone	31.14																
SILTSTONE, greyish brown, fresh, broken core	31.84															- - - - 35—	
COAL, fresh	35.50																
MUDSTONE, weak —	35.85 36.23	===														\dashv	
SILTSTONE, brownish grey, SANDSTONE, light grey, moderately weak, broken core	36.66															-	
REMARKS:	40										Ш					40	
N.A. Not Applicable Sonic derived uniaxial compressive stre	ength U	ICS = 3	330e ^{-0.04}	^{199t} , where t = interval transi	t time (re	ciproca	al of vel	ocity) in micr	osec	onds i			≣ 1 : 10 ≣D BY:			
foot. Durability test : shake in water for											ieolo						

CLIENT:					CORE TY	PE:		LO	CATION		BOREHOLE No:					
CENTRAL QUE	ENS:	LAN	D CO	OAL PTY LTD	CASING E	DEPTH:		Е	772 99	98.69	ST	X124				
SITE LOCATION / PURPOSE :	NEX	ГТО	BRU	CE HIGHWAY,	WATER DEPTH:	R TABLE		N	7 486 3		 	T 3 OF				
GEOTECHNICAL ASSES	SME	CNT			LEVEL:			GR	OUND LEVEL 32.4			NG DATE: 20/04/1				
DESCRIPTION OF CORE ROCK TYPE, COLOUR, GRAIN SIZE	R.L. SANTAM DEPTH	GRAPHIC LOG	DUR- ABILITY	STRUCTURES JOINTS, BEDDING, VEINS CRUSHED ZONES, FA	, SEAMS,	FRAC. PER METRE	R.Q.D.	1	SON COMPR	IC DERIVE S	ED UNIA	AXIAL TH (MPa)	00			
SILTSTONE, brownish grey, SANDSTONE, grey, fresh, weak, broken core				INDETERMINATE												
- - - - - - -	45												45—			
MUDSTONE, dark grey, SANDSTONE, light grey, fresh, weak, broken core	47.74												- - - - 50—			
COAL, fresh	50.60	•••											- - -			
MUDSTONE, dark grey, weak, broken core	52.91															
Tuff —== Siltstone —	55							,					55—			
SANDSTONE, light grey, MUDSTONE, dark grey, weak, broken core Core loss	58.56 · 60							Г					- - 60			
REMARKS: Cored hole																
N.A. Not Applicable Sonic derived uniaxial compressive stre	enath U	CS = 3:	330e ^{-0.04}	199t, where t = interval trans	it time (re	ciproca	al of vel	ocitv) in microseo	conds ner		SCALE 1 : 100 LOGGED BY:				
foot. Durability test: shake in water for									eologis	st						

CLIENT:		CORE TY	PE:		LO	CATIO	N		В	OREH	IOLE	No:			
CENTRAL QUE	ENSLAN	D CO	OAL PTY LTD	CASING D	EPTH:		Е	77	'2 99	8.69		STX	124		
SITE LOCATION / PURPOSE :	NEXT TO	BRU	CE HIGHWAY,	WATER DEPTH:	RTABLE		N	7 48	36 38	8.85	SI	HEET	4 OF	4	
GEOTECHNICAL ASSES			,	LEVEL:			GR	DUND L 3	EVEL 2.41		DF		G DATE 0/ 04 /1		
DESCRIPTION OF CORE ROCK TYPE, COLOUR, GRAIN SIZE	METRES GRAPHIC LOG	DUR- ABILITY	STRUCTURES JOINTS, BEDDING, VEINS, CRUSHED ZONES, FAU	SEAMS,	FRAC. PER METRE	R.Q.D.	1	COI	SONI MPRE	C DEF	RIVED E STRI	UNIA) ENGTI	KIAL H (MPa	1) 100	1
SANDSTONE, light grey, MUDSTONE, dark grey, weak, broken core	65		INDETERMINATE												65
SANDSTONE, light grey, fresh, moderately weak	72.73														- - 70— - - - -
MUDSTONE, dark grey, weak	74.06		 Core loss												- - 75—
- -		- - - -					N	lo soni	c log						-
END OF HOLE 77.60 m															-
REMARKS:	80														80
Cored hole N.A. Not Applicable											_				
	ength UCS = 3	330e ^{-0.04}	99t, where t = interval transit	time (re	ciproca	l of vel	ocitv) in mic	rosec	onds n		CALE 1			
foot. Durability test : shake in water for	derived uniaxial compressive strength UCS = $3330e^{-0.0499t}$, where t = interDurability test: shake in water for 20 secs and assess, then immerse in N								ration		-		ologi	st	

STX124




CLIENT:		CORE TY	PE:		LOCA	ATION		1	EHOLE					
CENTRAL QUE	ENS	LAN	D C	OAL PTY LTD	CASING D	EPTH:		Е	771 9	54.70	ST	X126	В	
SITE LOCATION / PURPOSE :	NEX	ТТО	BRU	CE HIGHWAY.	WATER	TABLE		N	7 487 1	31.70	SHEE	ET 10	F 4	
GEOTECHNICAL ASSES				,	DEPTH: LEVEL:			GROU	ND LEVEL			NG DAT		
DESCRIPTION OF CORE ROCK TYPE, COLOUR, GRAIN SIZE	METRES DEPTH DEPTH		DUR- ABILITY	STRUCTURES JOINTS, BEDDING, VEINS, CRUSHED ZONES, FAL	SEAMS,	FRAC. PER METRE	R.Q.D.			IC DERI\			Pa)	
CLAY, brown				INDETERMINATE	-	_		No	sonic log	3				
SILTSTONE, dark grey, SANDSTONE, grey, fresh, weak to very weak	10 11.86			Base of weathering 11.86										5
REMARKS: Cored hole														
N.A. Not Applicable												E 1 : 100		
Sonic derived uniaxial compressive str foot. Durability test : shake in water fo												ED BY: G <mark>eolo</mark> g	gist	

CLIENT:		CORE TY	PE:		LOCA	ATION		ВО	REHO	LE No):			
CENTRAL QUE	ENS	LAN	D CC	OAL PTY LTD	CASING D	EPTH:		Е	771 9	54.70	5	STX12	26B	
SITE LOCATION / PURPOSE :	NEX	T TO	BRU	CE HIGHWAY.	WATER	RTABLE	<u> </u>	N	7 487 1	31.70	SH	EET 3	3 OF 4	
GEOTECHNICAL ASSES				· · · · · · · · · · · · · · · · · · ·	DEPTH: LEVEL:			GROU	ND LEVEI		DRI	LLING D)ATE:	
DESCRIPTION OF CORE	METRES		DUR- ABILITY	STRUCTURES	 }		R.Q.D.		SON	IIC DERI		JNIAXIA	AL.	
ROCK TYPE, COLOUR, GRAIN SIZE	R.L. DEPTH		%	JOINTS, BEDDING, VEINS, CRUSHED ZONES, FAL	SEAMS, JLTS	FRAC. PER METRE		10	COMPR	ESSIVE	STRE	NGTH (MPa)	,
MUDSTONE, black, SILTSTONE, grey, moderately weak	43.17			INDETERMINATE				No 	sonic lo					
COAL, fresh, weak MUDSTONE Core loss —	43.63		<u> </u>											-
	44.26		-											
SILTSTONE, medium grey, SANDSTONE, grey, fresh, weak to very weak -	45 46.70													45— - -
SILTSTONE, medium grey,	40.70	- : : : :												
fresh, very weak	- 50 - 55 - 55 - 59.60 - 60													50—
Cored hole														
N.A. Not Applicable											SC	ALE 1:	100	
Sonic derived uniaxial compressive stre												GED B		
foot. Durability test : shake in water for													ogist	:

CLIENT:		CORE TY	PE:		LOCA	TION		- 1		OLE N	o:			
CENTRAL QUE	ENS	LAN	D CC	OAL PTY LTD	CASING D	EPTH:		Е	771 9	54.70		STX	126B	
SITE LOCATION / PURPOSE :	NEX	T TO	BRU	CE HIGHWAY.	WATER	RTABLE		N	7 487 1	31.70	Sŀ	1EET	4 OF	4
GEOTECHNICAL ASSES				,	DEPTH: LEVEL:			GROU	ND LEVE 37.2		DR		DATE: /05/11	
DESCRIPTION OF CORE ROCK TYPE, COLOUR, GRAIN SIZE	R.L. DEPTH		DUR- ABILITY	STRUCTURES JOINTS, BEDDING, VEINS, CRUSHED ZONES, FAL	SEAMS, JLTS	FRAC. PER METRE	R.Q.D.	10 I	SON COMPR	IIC DER ESSIVE		UNIAX	(IAL	
SILTSTONE, medium Core loss grey, fresh -	60.75			INDETERMINATE					sonic lo	B				-
SANDSTONE, grey, fresh, mainly moderately weak	62.60													65—
SILTSTONE, medium grey, fresh, very weak	69.89 70													70— - - -
SANDSTONE, grey, fresh, very weak	73.17													-
END OF HOLE 74.60 m	75													75— - - - - - - - 80
REMARKS: Cored hole N.A. Not Applicable Sonic derived uniaxial compressive stre	anath I	ICS = 3	33∩≏ ^{-0.04}	991 where t = interval transi	t time (ro	ciproca	l of vel	ocity) in	microsc	conds r		CALE 1		
foot. Durability test : shake in water for											51 10		ologis	it

CLIENT:	LIENT : CENTRAL QUEENSLAND COAL PTY							LO	CATIO	V		ВС	REH	IOLE N	lo:
CENTRAL QUE	ENS	LAN	D CO	OAL PTY LTD	CASING D	EPTH:		Е	77	1 431	1.56	;	STX	127	
SITE LOCATION / PURPOSE :	NEX	T TO	BRU	CE HIGHWAY.	WATER	TABLE		N	7 48	7 323	3.69	SH	HEET	1 OF	4
GEOTECHNICAL ASSES				,	DEPTH: LEVEL:			GRO	OUND LE	VEL (DR		DATE: /05/1	
DESCRIPTION OF CORE ROCK TYPE, COLOUR, GRAIN SIZE	WETRES	GRAPHIC LOG	DUR- ABILITY	STRUCTURES JOINTS, BEDDING, VEINS, CRUSHED ZONES, FAL	SEAMS, JLTS	FRAC. PER METRE	R.Q.D.		COM	SONIC IPRES	DER SSIVE	VED (STRE	JNIAX NGTI	(IAL H (MPa))
SOIL, brown	- - - - -	\$ \{ \{ \} \} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		INDETERMINATE				N	o sonio	clog					-
CLAY, red to brown	brown														5 — 5 — - 10 —
SANDSTONE, brown, highly weathered	14.47 15														15— -
SILTSTONE, dark grey, SANDSTONE, grey, fresh, very weak Coal Core loss	Base of weathering 16.82											- - - - 20			
REMARKS: Cored hole N.A. Not Applicable Sonic derived uniaxial compressive str											onds pe		CALE 1	BY:	
foot. Durability test: shake in water fo	r 20 sed	cs and a	assess,	then immerse in water for 2	2 hrs and	estima	ite perd	cent c	lisintegr	ation.			Ge	ologis	st

CLIENT :	CLIENT: CENTRAL QUEENSLAND COAL PTY							LO	CATION	1		BOF	REHOL	E No	
CENTRAL QUE	ENS	LAN	D CO	OAL PTY LTD	CASING D	EPTH:		Е	77	431.	56	S	TX12	27	
SITE LOCATION / PURPOSE :	NEX	T TO	BRU	CE HIGHWAY,	WATER DEPTH:	TABLE		N		7 323.		SHE	ET 2	OF 4	
GEOTECHNICAL ASSES	SMI	ENT			LEVEL:			GRO	OUND LE 37	VEL (AI	HD)	DRIL	LING D. 13/0		
DESCRIPTION OF CORE ROCK TYPE, COLOUR, GRAIN SIZE	R.L. DEPTH	GRAPHIC LOG	DUR- ABILITY %	STRUCTURES JOINTS, BEDDING, VEINS, CRUSHED ZONES, FAL	SEAMS, JLTS	FRAC. PER METRE	R.Q.D.	10	COM				NIAXIA IGTH (I		1
SANDSTONE, light Core loss grey, fresh, moderately weak Coal	20.50			INDETERMINATE											
SILTSTONE, grey, fresh, very weak															
COAL, fresh, very weak	22.50														
SILTSTONE, dark grey, fresh, very weak	23.09														- - - 25-
COAL, fresh, very weak	25.69														
SILTSTONE, grey, fresh, – very weak Core loss	26.66														
COAL, fresh, very weak	27.51														
SILTSTONE, grey, fresh, very weak	28.44							ון							
COAL, fresh, Core loss very weak	30 30.11														30—
SILTSTONE, grey, Mudstone fresh, very weak	30.98														
SANDSTONE, grey, fresh, moderately weak to very weak	35														35—
N.A. Not Applicable		100 0	2200 04	99t	11: /	-t- · ·	laf '	9-1	\ !=!		. ماد		LE 1 : 1		
Sonic derived uniaxial compressive stre foot. Durability test: shake in water for											ds per		GED BY Geol e		

CLIENT:		CORE TY	PE:		LO	CATIO	V		BOR	EHOL	E No):			
CENTRAL QUE	ENS	LAN	D CO	OAL PTY LTD	CASING D	EPTH:		Е	77	1 431.	56	S	TX12	7	
SITE LOCATION / PURPOSE :	NEX	ТТО	BRU	CE HIGHWAY.	WATER	RTABLE		N	7 48	7 323.	69	SHE	ET 3	OF 4	
GEOTECHNICAL ASSES				<u> </u>	DEPTH: LEVEL:			GR	OUND LE	EVEL (AF 7.23	HD)	DRILL	ING D		
DESCRIPTION OF CORE		GRAPHIC LOG	DUR- ABILITY	STRUCTURES JOINTS, BEDDING, VEINS,	SEVWS	.: "	R.Q.D.			CONIC	DERIV	ED I IN	ΙΛΥΙΛΙ		
ROCK TYPE, COLOUR, GRAIN SIZE	R.L. DEPTH		%	CRUSHED ZONES, FAL	JLTS	FRAC. PER METRE		1	0 20 1 1	IPRES	SIVE S	TRENU	۱) H (اد ۱۵ ا	/IPa) 	\Box
SANDSTONE, grey, fresh, very weak to moderately weak	45			INDETERMINATE											45—
SILTSTONE, grey, fresh, very weak SANDSTONE, grey, fresh, moderately weak to moderately strong												50—			
- - - - - - - -												55— - - - - -			
Siltstone —									,		_			\square	┛┇
REMARKS: Cored hole	60	•••													60
Corea noie															
N.A. Not Applicable			000	1004									E 1 : 1		
Sonic derived uniaxial compressive stre foot. Durability test : shake in water for	ength L 20 sec	ICS = 3 cs and a	330e ^{-0.04} assess, f	where t = interval transi then immerse in water for 2	t time (re 2 hrs and	ciproca estima	al of vel ate perc	ocity ent o) in micro disintegra	osecon ation.	ds per		ED BY Seol o		;

CLIENT:		CORE TY	PE:		LOCA	TION		BORE						
CENTRAL QUE	ENS	LAN	D CC	OAL PTY LTD	CASING D	EPTH:		E	771 43	31.56	ST	X127		
SITE LOCATION / PURPOSE :	NEX	т то	BRU	CE HIGHWAY.	WATER	RTABLE		N 7	7 487 32	23.69	SHEE	T 4 O	F 4	
GEOTECHNICAL ASSES			2100	<u></u>	DEPTH: LEVEL:			GROUN	ID LEVEL		DRILLIN	NG DAT 3/05/		
DESCRIPTION OF CORE	METRES	GRAPHIC	DUR-	STRUCTURES	<u> </u>		R.Q.D.			IC DERIV				
ROCK TYPE, COLOUR, GRAIN SIZE	R.L. DEPTH	LOG	ABILITY %	JOINTS, BEDDING, VEINS, CRUSHED ZONES, FAL	SEAMS, JLTS	FRAC. PER METRE		10		ESSIVE S	TRENG	TH (MF	Pa) 100	
SANDSTONE, grey, fresh, moderately strong Siltstone Siltstone END OF HOLE 74.60 m	INDETERMINATE INDETERMINATE	JLTS	FRA PER			onic log			80		65			
-	-													
REMARKS:	80	I				<u> </u>								80
Cored hole														
N.A. Not Applicable Sonic derived uniaxial compressive str	enath I	ICS - 3	330 ₂ -0.04	99t where t = interval transit	t time /ro	cinroco	l of vol	ocity) in	microsoo	onde nor		1 : 100 D BY	1	
foot. Durability test : shake in water fo											1	eolog	gist	



CLIENT:		CORE TYP	PE:		LOCA	ATION			EHOLE				
CENTRAL QUE	ENSLA	AND CO	OAL PTY LTD	CASING D	EPTH:		Е	772 58	35.31	ST	X132	С	
SITE LOCATION / PURPOSE :	NEXT 1	O BRU	CE HIGHWAY.	WATER	TABLE		N	7 486 9	43.74	SHE	ET 10	F 4	
GEOTECHNICAL ASSES			<u></u>	DEPTH: LEVEL:			GROU	ND LEVEL			ING DAT 04/06/		
DESCRIPTION OF CORE	METRES GRA		STRUCTURES			R.Q.D.		SON	IC DERI\	/ED UN	IAXIAL		
ROCK TYPE, COLOUR, GRAIN SIZE	R.L. DEPTH DOT	%	JOINTS, BEDDING, VEINS, CRUSHED ZONES, FAL	SEAMS, JLTS	FRAC. PER METRE			COMPR	ESSIVE S	STRENC	3TH (MF	¹⁰⁰	
Not logged	Assumed base of weathering 19.40 INDETERMINATE	JLTS	FR PE		No	sonic log	**************************************	60			5		
Cored hole N.A. Not Applicable										0041	F 4 : 400		
	enath LICS	= 3330e ^{-0.04}	99t where t = interval transit	time (re	ciproca	l of vel	ocitv) ir	n microse	conds nei		E 1 : 100 ED BY:		
foot. Durability test : shake in water for	Not Applicable derived uniaxial compressive strength UCS = 3330e ^{-0.0499t} , where t = interpretability test: shake in water for 20 secs and assess, then immerse in							integratio	7. 1.		Seolog	gist	

CLIENT:		CORE TY	PE:		LOC	ATION	l		1		DLE N	0:			
CENTRAL QUE	ENS	SLAN	D CC	OAL PTY LTD	CASING D	EPTH:		E	772	2 585.	.31	8	TX1	32C	
SITE LOCATION / PURPOSE :	NEX	T TO	BRU	CE HIGHWAY.	WATER	RTABLE		N	7 486	943	.74	SHI	EET :	2 OF 4	4
GEOTECHNICAL ASSES			2100	02 mgm,,,,	DEPTH: LEVEL:			GRO	UND LE	VEL (A . 50	.HD)	DRIL		DATE: 06/11	1
DESCRIPTION OF CORE ROCK TYPE, COLOUR, GRAIN SIZE	METRES FE E		DUR- ABILITY	STRUCTURES JOINTS, BEDDING, VEINS,	SEAMS,	FRAC. PER METRE	R.Q.D.		S	ONIC	DERI\		NIAXI		
SILTSTONE, fresh	R.L.	-:::	%	CRUSHED ZONES, FAL	JLTS	<u> </u>		10	20	40	+	60	80	10	0
SANDSTONE, grey, Core loss	20.40	• • • •	1	INDETERMINATE				l No	sonic I I	log I					-
fresh, very weak															-
Coal	21.81]												
SILTSTONE, fresh, very weak]	- = = = =													-
SANDSTONE, grey, fresh,	22.63	• • • •	1												_
weak Core loss —=															.
_															-
-															-
-	25														25-
_ _															
-												.			
_															-
-			1												-
_]												-
-															•
															-
_	30		1												30-
-															.
_															-
-															-
_]												-
-		• • •													
_]												_
-															.
_	35		1												35-
-			1												•
_		• • • •	.												
Coal —— Mudstone ——															_
Coal —															╽╽.
Coal —]												-
-															-
_															-
COAL	39.74 40		1												40
REMARKS:						•					•	- 1	-	•	
Cored hole															
N.A. Not Applicable													ALE 1 :		
Sonic derived uniaxial compressive strefoot. Durability test: shake in water for											nds per		GED E	_{Y:} logis	t
									-			1		٠.٠	

CLIENT:		CORE TY	PE:		LOCA	ATION		BC	REH	OLE N	o:			
CENTRAL QUE	ENS	LAN	D CC	OAL PTY LTD	CASING D	EPTH:		Е	772 58	35.31	;	STX	132C	
SITE LOCATION / PURPOSE :	NEX	T TO	BRU	CE HIGHWAY.	WATER	TABLE		N	7 486 94	43.74	SH	IEET	3 OF 4	ļ
GEOTECHNICAL ASSES			2100	<u></u>	DEPTH: LEVEL:			GROU	ND LEVEL		DR		DATE:	
	METRES	GRAPHIC	DUR-	STRUCTURES			R.Q.D.				 VED		/06/11 IAL	
ROCK TYPE, COLOUR, GRAIN SIZE	R.L. DEPTH	LOG	ABILITY %	JOINTS, BEDDING, VEINS,	SEAMS, JLTS	FRAC. PER METRE		10	COMPRI					0
DESCRIPTION OF CORE ROCK TYPE, COLOUR, GRAIN SIZE SANDSTONE, Mudstone MUDSTONE, grey, fresh, weak to very weak Coal C	STRUCTURES JOINTS, BEDDING, VEINS, CRUSHED ZONES, FAL INDETERMINATE	SEAMS, JLTS	FRAC. PER METRE		NO		40		JNIAX	IAL	0			
very weak	-													
REMARKS:	60					<u> </u>				1				60
Cored hole														
N.A. Not Applicable	onath I	IC6 - 3	330 ₂ -0.04	99t where t = interval transit	timo /ro	oinross	l of vol	ocity) :-	miorese	ondo s		GGED		
	c derived uniaxial compressive strength UCS = 3330e ^{-0.0499t} , where t = in Durability test: shake in water for 20 secs and assess, then immerse i										51 LU		ologis	t

CLIENT:		CORE TYP	PE:		LOC	ATION		BC	REH	OLE N	0:			
CENTRAL QUE	ENS.	LAN	D C	OAL PTY LTD	CASING D	EPTH:		Е	772 5	85.31		STX′	132C	
SITE LOCATION / PURPOSE :	NEX	ТОТ	BRU	ICE HIGHWAY.	WATER	TABLE		N	7 486 9	43.74	SH	HEET	4 OF 4	4
GEOTECHNICAL ASSES				· · · · · · · · · · · · · · · · · · ·	DEPTH: LEVEL:			GROU	JND LEVE 31.5		DR		DATE: /06/11	1
DESCRIPTION OF CORE ROCK TYPE, COLOUR, GRAIN SIZE	R.L. DEPTH	GRAPHIC LOG	DUR- ABILITY %	STRUCTURES JOINTS, BEDDING, VEINS, CRUSHED ZONES, FAL	SEAMS,	FRAC. PER METRE	R.Q.D.	10	SON COMPR	IIC DER ESSIVE				00
SILTSTONE, weak	60.50			INDETERMINATE	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	шшг		\vdash	sonic lo	 	T			
SANDSTONE, grey, fresh, moderately weak -														-
COAL, weak Mudstone —=	62.23		•											-
MUDSTONE SANDSTONE, grey, fresh, weak to very weak	63.32 63.60													-
, Coal ——	65													65 —
Siltstone —														-
MUDSTONE, grey, SANDSTONE, light grey, fresh, weak to very weak	67.70													-
- - -	70													70—
SANDSTONE, light grey, SILTSTONE, grey, fresh, weak Coal	71.14			_Slickensides										
END OF HOLE 74.60 m	75							\parallel						75—
- - -														- - -
- - -														-
DEMARKO	80												\perp	80
REMARKS: Cored hole														
N.A. Not Applicable				100								CALE 1		
	derived uniaxial compressive strength UCS = 3330e 0.0499t, where t = interpretability test: shake in water for 20 secs and assess, then immerse in										er LO	GGED I	BY: p logis	t

APPENDIX

C

NEW BOREHOLE DATA

Monitoring Tools

<<DrawingFile>> 18/10/2019 10:37 10.0.000 Datgel AGS RTA, Photo,

M30863 STX1903G.GPJ

CARDNO CORED BOREHOLE

CARDNO 2.01.6 LIB.GLB Log

Client: Hole No: STX1903G **Central Queensland Coal** Project: CQ Coal Styx Basin Geotechnical Investigation Location: Styx Basin Job No: M30863 Sheet: 1 of 16 Position: E773392.670 N7486730.310 55 MGA94 Angle from Horizontal: 90° Surface Elevation: 32.722 m AHD Rig Type: UDR650 Mounting: Truck **Driller: Waratah Coal** Contractor: Waratah Coal Casing Diameter: 0.1016/101.6 Bit Type: **Bit Condition:** Date Started: 28/8/19 Date Completed: 2/9/19 Logged By: AD Checked By: Material Description **Defect Description** Coring RL (m AHD) SOIL TYPE, plasticity or particle (E **Estimated** Average Weathering Strength Is₍₅₀₎ MPa Natural RQD (%) characteristic, colour, secondary Graphic Log Depth (Method 8 Additional Data Fluid Defect & minor components DEFECT TYPE, orientation, TCR (ROCK NAME, grain size and type, Axial O - Diametr Spacing shape, roughness, infilling (mm) 8 8 8 8 colour, fabric and texture 0.1 or coating, thickness, other inclusions & minor components T Z I Z H 0.00: grass roots Sandy CLAY: brown, fine to coarse grained Jili 100 0 sand, grass roots, MPS 2 LL 40 P75 50 0.56m Rotary 🖈 0.56: tree root at 0.8m Т Sandy CLAY: brown, fine to coarse grained sand, trace fine to coarse grained, sub-rounded gravel, tree root at 0.8m, MPS 15 LL 40 P75 60 100 0 31 1.81: with gypsum and manganese GYPSUM: white, MPS 1 LL 20 P75 80 2 Sandy CLAY: grey mottled dark-brown, orange becoming grey mottled black, red, white, fine to medium grained sand, with gypsum and manganese nodules, MPS 2 LL 35 P75 80 100 0 30 3 29 28 - 5 4 27 0 100 26 Sandy CLAY: grey mottled dark-brown, orange, black, white, fine to medium grained sand, 7.59: gypsum mottles 25 gypsum mottles, MPS 2 LL 35 P75 75 8 8.40m 8.40: gypsum mottles Sandy CLAY: grey mottled dark-brown, orange, black, white, fine to medium grained sand, 24 gypsum mottles, MPS 2 LL 40 P75 60 g 100 0 1 23 WATER DRILLING ROCK STRENGTH DEFECT TYPE PLANARITY COATING Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling Rock roller Rotary core (85mm) Rotary core (61.94mm) Diatube concrete coring Push tube Water Level Extremly High Clean Joint Curved Very High High Medium DIS AD/T HFA Sheared zone Discontinuous SN Stained Bedding Parting Seam Irregular Planar VNR CT Veneer (thin or patchy) Coating (up to 1mm) water inflow Low Very Low ■ water outflow Foliation Stepped INFILL MATERIALS ν̈́L Vein Cleavage Crushed Seam ٧N UN Undulose ROCK QUALITY DESCRIPTIONS **ROCK WEATHERING** CL CS Carbonaceus X MU ROUGHNESS Unidentified minteral Fresh Fresh Slightly Weathered Distinctly Weathered Moderately Weathered Highly Weathered Extremly Weathered MS Secondary mineral Chlorite VR RF Very Rough Rough Fracture Zone Drift Lift Handing Break Drilling Break RQD Rock Quality Push tube Percussion sampling Designation (%) Smooth Slockensided Calcite SON AH Sonic drilling TCR **Total Core** Iron Oxide POL Polished Quartz Recovery (%) Refer to explanatory notes for details of abbreviations and basis of descriptions CARDNO (QLD) PTY LTD

4C core Box 1

4C core Box 3 4C core Box 4

4C core Box 2

4C core Box 5

4C core Box 7

4C core Box 6

4C core Box 8

STX1903G Core Photographs

4C core Box 9

4C core Box 11

4C core Box 10

4C core Box 12

HQ core Box 1

BH S+X 1903G CENTRAL OLD COAL STYX BASIN GEOTECHNICAL LOGGING DATE: 30/08/19
BOX: 2

The state of the state o

HQ core Box 2

HQ core Box 3 HQ core Box 4

HQ core Box 5

HQ core Box 7 HQ core Box 8

HQ core Box 6

HQ core Box 9

HQ core Box 10

HQ core Box 11 HQ core Box 12

HQ core Box 13

HQ core Box 15 HQ core Box 16

HQ core Box 14

HQ core Box 17

HQ core Box 19 HQ core Box 20

HQ core Box 18

HQ core Box 21

HQ core Box 23 HQ core Box 24

HQ core Box 22

HQ core Box 25

HQ core Box 27

HQ core Box 26

HQ core Box 28

Monitoring Tools

<<DrawningFile>> 18/10/2019 10:44 10.0.000 Datgel AGS RTA, Photo,

M30863 STX1904G.GPJ

CARDNO 2.01.6 LIB.GLB Log CARDNO CORED BOREHOLE

Client: Hole No: STX1904G CO Coal Project: Styx Basin Geotechnical Investigation Location: Styx Basin Job No: M30863 Sheet: 1 of 11 Position: E772389.090 N7487158.620 55 MGA94 Angle from Horizontal: 90° Surface Elevation: 36.358 m AHD Rig Type: UDR650 Mounting: Truck **Driller: Waratah Coal** Contractor: Waratah Coal Casing Diameter: **Bit Condition:** Bit Type: Date Started: 18/9/19 Date Completed: 22/9/19 Logged By: AD Checked By: Material Description **Defect Description** Coring SOIL TYPE, plasticity or particle characteristic, colour, secondary RL (m AHD) Estimated Average Natural Depth (m) Weathering Strength Is₍₅₀₎ MPa RQD (%) Graphic Log Method 8 Additional Data Fluid Defect & minor components DEFECT TYPE, orientation, TCR (ROCK NAME, grain size and type, Axial O - Diametr Spacing shape, roughness, infilling (mm) 8 8 8 8 5.3 colour, fabric and texture. or coating, thickness, other T Z I Z H inclusions & minor components Sandy Gravelly CLAY: brown, fine to coarse grained, sub-rounded gravel, fine to coarse Drillin grained sand, MPS 65 LL 30 P75 40 36 0.90m Sandy Gravelly CLAY: brown, fine to medium grained, sub-rounded gravel, fine to coarse 100 0 grained sand, MPS 30 LL 30 P75 45 35 1.85m Sandy CLAY: brown, fine to coarse grained 2 sand, MPS 2 LL 35 P75 80 34 . 3 100 0 Sandy CLAY: pale-grey mottled orange, fine 33 grained sand, MPS 1 LL 30 P75 75 4.25m 4.41m COBBLE/BOULDER: brown mottled orange 32 Sandy CLAY: pale-grey mottled orange, brown, fine to medium grained sand, MPS 1 LL 35 P75 60 - 5 5 31 5.65m Sandy CLAY: brown-grey, fine to medium 100 0 grained sand, MPS 1 LL 40 P75 70 6 30 6.45n 6.45: with peaty laminations CLAY: grey, dark-grey, black, with peaty laminations, MPS 1 LL 55 P75 100 29 CLAY: brown-grey mottled orange, trace fine grained sailu, MPS 1 LL 45 P75 90 8 28 100 0 g 27 1 1 CORE LOSS 0.40m (9.76-10.16) WATER DRILLING ROCK STRENGTH DEFECT TYPE PLANARITY COATING Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling Rock roller Rotary core (85mm) Rotary core (61.94mm) Diatube concrete coring Push tube AD/V AD/T HFA Water Level Extremly High Clean Joint Curved Very High High Medium DIS Discontinuous SN VH Sheared zone Stained BP SM FL VN Bedding Parting Seam Irregular Planar VNR CT Veneer (thin or patchy) Coating (up to 1mm) water inflow Low Very Low ■ water outflow Foliation Stepped INFILL MATERIALS ν̈́L Vein Cleavage Crushed Seam UN Undulose ROCK QUALITY DESCRIPTIONS CL CS FZ **ROCK WEATHERING** Carbonaceus X MU ROUGHNESS Unidentified minteral Fresh Fresh Slightly Weathered Distinctly Weathered Moderately Weathered Highly Weathered Extremly Weathered MS Secondary mineral Chlorite VR RF Very Rough Rough Fracture Zone Drift Lift Handing Break Drilling Break RQD Rock Quality Push tube Percussion sampling Designation (%) Smooth Slockensided Calcite SON AH Sonic drilling TCR **Total Core** Iron Oxide POL Polished Quartz Recovery (%) Refer to explanatory notes for details of abbreviations and basis of descriptions CARDNO (QLD) PTY LTD

<<DrawningFile>> 18/10/2019 10:44 10.0.000 Datgel AGS RTA, Photo,

M30863 STX1904G.GPJ

CARDNO CORED BOREHOLE

CARDNO 2.01.6 LIB.GLB Log

Hole No: STX1904G Client: CO Coal Project: Styx Basin Geotechnical Investigation Location: Styx Basin Job No: M30863 Sheet: 2 of 11 Position: E772389.090 N7487158.620 55 MGA94 Angle from Horizontal: 90° Surface Elevation: 36.358 m AHD Rig Type: UDR650 Mounting: Truck **Driller: Waratah Coal** Contractor: Waratah Coal Casing Diameter: **Bit Condition:** Bit Type: Date Started: 18/9/19 Date Completed: 22/9/19 Logged By: AD Checked By: Material Description **Defect Description** Coring RL (m AHD) SOIL TYPE, plasticity or particle Estimated Average Natural Depth (m) Weathering Strength Is₍₅₀₎ MPa characteristic, colour, secondary RQD (%) Graphic Log Method 8 Additional Data Fluid & minor components Defect DEFECT TYPE, orientation, TCR (ROCK NAME, grain size and type, colour, fabric and texture, Axial O - Diametr Spacing shape, roughness, infilling (mm) 5.3 or coating, thickness, other , 2 ± ≥ <u>∓</u> inclusions & minor components 10 16m MUDSTONE, massive, brown-orange mottled HW 50 0 26 25 11.85 - 11.95 m: cemented bands 12 12.30m MUDSTONE WITH SANDSTONE LAMINATIONS, laminated, dark-grey, with minor carbonate precipitate, pyrite within 100 40 24 MW 13 23 13.66 - 13.74 m: cemented bands 14 22 15 100 70 21 16 16.10 m: JT, 70° 20 19 17.85 - 17.91 m: coal, dipping 10 100 100 18 18 18.82 - 18.90 m: coal, dipping 5 19 17 | |100 100 WATER DRILLING ROCK STRENGTH DEFECT TYPE PLANARITY COATING Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling Rock roller Rotary core (85mm) Rotary core (61.94mm) Diatube concrete coring Push tube AD/V AD/T HFA Water Level Extremly High Very High High Medium Curved Discontinuous Clean Joint DIS SN Sheared zone Stained Bedding Parting Seam Irregular Planar VNR CT Veneer (thin or patchy) Coating (up to 1mm) water inflow Low Very Low ■ water outflow Foliation Stepped INFILL MATERIALS ν̈́L Vein Cleavage Crushed Seam ٧N UN Undulose ROCK QUALITY DESCRIPTIONS CL CS FZ **ROCK WEATHERING** Carbonaceus X MU ROUGHNESS Unidentified minteral Fresh Fresh Slightly Weathered Distinctly Weathered Moderately Weathered Highly Weathered Extremly Weathered MS Secondary mineral Chlorite VR RF Very Rough Rough Fracture Zone Drift Lift Handing Break Drilling Break RQD Rock Quality Push tube Percussion sampling Designation (%) Smooth Slockensided Calcite SON AH Sonic drilling TCR **Total Core** Iron Oxide POL Polished Quartz Recovery (%) Refer to explanatory notes for details of abbreviations and basis of descriptions CARDNO (QLD) PTY LTD

Monitoring Tools

Photo,

18/10/2019 10:44 10:0:000 Datgel AGS RTA,

<<DrawingFile>>

M30863 STX1904G.GPJ

CARDNO CORED BOREHOLE

8

Hole No: STX1904G Client: CO Coal Project: Styx Basin Geotechnical Investigation Styx Basin Location: Job No: M30863 Sheet: 3 of 11 Position: E772389.090 N7487158.620 55 MGA94 Angle from Horizontal: 90° Surface Elevation: 36.358 m AHD Rig Type: UDR650 Mounting: Truck **Driller: Waratah Coal** Casing Diameter: **Bit Condition:** Contractor: Waratah Coal Bit Type: Date Started: 18/9/19 Date Completed: 22/9/19 Logged By: AD Checked By: Material Description **Defect Description** Coring (m AHD) SOIL TYPE, plasticity or particle **Estimated** Average Depth (m) Weathering Strength Is₍₅₀₎ MPa Natural RQD (%) characteristic, colour, secondary Graphic Log Method 8 Additional Data Fluid Defect & minor components DEFECT TYPE, orientation, TCR ROCK NAME, grain size and type, Axial O - Diametr Spacing 퓝 shape, roughness, infilling (mm) 8 8 8 8 1.0 colour fabric and texture or coating, thickness, other _ ≅ ± ∄ ⊞ inclusions & minor components 100 100 COAL, massive, black, with sub-vertical carbonate veins SW 16 HW CARBONACEOUS MUDSTONE, massive, 20.56 m: DB 20.76m dark-brown, black 100 100 - 20.72 m: DB MM INTERLAMINATED SANDSTONE AND 20.89 m: DB 20.91 m: DB 21.10 m: DB SW SILTSTONE, fine grained, laminated, dark-grey, grey, bioturbation, bedding at 10 degrees, pyrite within laminations 21 15 21.46m MUDSTONE, laminated, dark-grey 21.78m 21.76 - 21.86 m: multiple calcite veins SANDSTONE, fine grained, laminated, grey, bedding at 15 degrees 22 F 14 — 22.52 m: DB ____22.53 - 22.62 m: multiple calcite veins, 100 100 22.78m SANDSTONE, fine grained, massive, grey SANDSTONE, fine grained, laminated, grey, bedding at 15 degrees 23 23.32 m: DB 13 V CARBONACEOUS SILTSTONE, massive, 23.54m black 23.64 m: DB 23.78m SILTSTONE, massive, dark-grey SANDSTONE, fine grained, grey, soft sediment 24 12 COAL, massive, black CARBONACEOUS SILTSTONE, massive. 25.03m\dark-grey 25.00 m: JT, 75°, CU 25 SILTSTONE, dark-grey, coal inclusions БĞ 25.33m CARBONACEOUS SILTSTONE, massive, - 25.29 m: DB 25.44 m: DB SILTSTONE, laminated, dark-grey 100 100 CARBONACEOUS MUDSTONE, massive, 26 \black - 26.18 m: JT. 50°. PR COAL, massive, black, multiple calcite veins at 26.31 - 26.34 m: multiple drill breaks 10 26 50m 90 degrees 26.50 m: DB CARBONACEOUS SILTSTONE, massive - 26.76 m; JT, 75°, PR, healed SILTSTONE, massive, dark-grey 27 -27.43 m: JT, 55°, PR, RF 27.80m CARBONATE VEIN, pale-grey, grey SILTSTONE, laminated, dark-grey, bedding at 28 100 99 28.80m ↓ 28.97m CARBONACEOUS SILTSTONE, massive, 29 - 29.06 m: JT, 55°, PR, RF SILTSTONE, massive, dark-grey 1 1 29.93m DRILLING WATER ROCK STRENGTH DEFECT TYPE PLANARITY COATING Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling Water Level Extremly High Clean Joint Curved AD/T HFA Very High Sheared zone DIS Discontinuous SN Stained Bedding Parting Seam Irregular Planar VNR CT Veneer (thin or patchy) Coating (up to 1mm) High Medium water inflow Washbore drilling Rock roller Rotary core (85mm) Rotary core (63.5mm) Rotary core (51.94mm) Diatube concrete coring Low Very Low ■ water outflow Foliation Stepped INFILL MATERIALS ν̈́L Vein Cleavage Crushed Seam ٧N UN Undulose **ROCK QUALITY ROCK WEATHERING** CL CS Carbonaceus X MU ROUGHNESS DESCRIPTIONS Unidentified minteral Fresh Fresh
Slightly Weathered
Distinctly Weathered
Moderately Weathered
Highly Weathered
Extremly Weathered MS Secondary mineral Chlorite VR RF Very Rough Rough Fracture Zone Drift Lift Handing Break Drilling Break RQD Rock Quality Push tube Percussion sampling Designation (%) Smooth Slockensided Calcite SON Sonic drilling TCR **Total Core** Iron Oxide POL Polished Quartz Recovery (%) Refer to explanatory notes for details of abbreviations and basis of descriptions CARDNO (QLD) PTY LTD

<<DrawingFile>>

M30863 STX1904G.GPJ

CARDNO CORED BOREHOLE

Log

Client: Hole No: STX1904G CO Coal Project: Styx Basin Geotechnical Investigation Styx Basin Location: Job No: M30863 Sheet: 4 of 11 Position: E772389.090 N7487158.620 55 MGA94 Angle from Horizontal: 90° Surface Elevation: 36.358 m AHD Rig Type: UDR650 Mounting: Truck **Driller: Waratah Coal** Contractor: Waratah Coal Casing Diameter: **Bit Condition:** Bit Type: Logged By: AD Date Started: 18/9/19 Date Completed: 22/9/19 Checked By: Material Description **Defect Description** Coring (m AHD) SOIL TYPE, plasticity or particle (E **Estimated** Average Weathering Strength Is₍₅₀₎ MPa Natural RQD (%) characteristic, colour, secondary Graphic Log Depth (Method 8 Additional Data Fluid & minor components Defect DEFECT TYPE, orientation, TCR 씸 ROCK NAME, grain size and type, Axial O - Diametr Spacing shape, roughness, infilling (mm) 8 8 8 8 1.0 colour, fabric and texture. or coating, thickness, other T Z I Z H inclusions & minor components COAL, massive, black (continued) 100 99 30.15 m: JT, 45°, PR, S SILTSTONE 6 30.50m ↓ 30.71m CARBONACEOUS SILTSTONE, black 30.58 - 30.62 m: coal - 30 75 m: DB SILTSTONE, dark-grey, with minor sandstone 31 31.01 m: JT, 75°, PR, S -31.30 m: DB 31.47 - 31.60 m: VN. 80°. IR. carbonate 31.60m SANDSTONE, laminated, grey, with siltstone 100 99 — 31.86 m: VN, 75°, PR, S ~ 31.94 m: JT, 60°, PR 32 32.15m ~ 32.06 m: DB ~ 32.13 - 32.16 m: SM, 30° SILTSTONE, dark-grey, with minor sandstone -32.37 m: DB – 32.75 - 32.78 m: SM, 30° – 32.84 m: JT, 50°, PR, healed 33.01m 33 33.23m CORE LOSS 0.22m (33.01-33.23) 33.34 m: DB 33.37 m: DB 33.47 m: DB 33.56 m: DB 33.77 m: DB 33.41m SANDSTONE, laminated, dark-grey, with siltstone laminations SILTSTONE, massive, dark-grey COAL, black, with carbonaceous siltstone 34 34.32 m: DB 2 34.60 m: DB 97 97 34.74 - 34.78 m: DB SILTSTONE, dark-grev, with minor laminations БĞ 35.06m at 15 degrees 35 SILTSTONE, massive, dark-grey - 35.27 m: VN, 35° -35.65 m: VN, 50° - 35.95 m: VN, 40° 36 0 - 36.36 m: DB 36.71 m: DB 36.87 - 37.12 m: thermally altered zone, carbonate zone 37 37.63m COAL, black — 37.54 m: DB — 37.64 m: DB 100 100 37.90m SILTSTONE, dark-grey - 37.94 m: DB - 38.07 m: DB INTERLAMINATED COAL AND CARBONACEOUS SILTSTONE, black, dark-grey, laminations at 10 degrees 38 - 38.22 m: DB - 38.35 m: JT, 50°, PR, healed - 38.40 m: DB -2 SILTSTONE, dark-grey, bioturbation, rare coal inclusions, soft sediment deformation 38.65 m: JT, 50°, PR, healed 38.68 m: DB 38.94 m: DB 39 -3 - 39.39 m: DB — 39.57 m: JT, 45°, PR, RF 〜 39.64 m: JT, 45°, PR, RF 〜 39.78 m: DB 100 100 DRILLING WATER ROCK STRENGTH DEFECT TYPE PLANARITY COATING Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling Rock roller Rotary core (85mm) Rotary core (61.94mm) Diatube concrete coring Push tube Water Level Extremly High Clean Joint Curved Discontinuous Very High High Medium DIS AD/T HFA Sheared zone SN Stained Bedding Parting Seam Irregular Planar VNR CT Veneer (thin or patchy) Coating (up to 1mm) water inflow Low Very Low ■ water outflow Foliation Stepped INFILL MATERIALS ν̈́L Vein Cleavage Crushed Seam ٧N UN Undulose **ROCK QUALITY ROCK WEATHERING** CL CS Carbonaceus X MU ROUGHNESS DESCRIPTIONS Unidentified minteral Fresh Fresh Slightly Weathered Distinctly Weathered Moderately Weathered Highly Weathered Extremly Weathered MS Secondary mineral Chlorite VR RF Very Rough Rough Fracture Zone Drift Lift Handing Break Drilling Break RQD Rock Quality Push tube Percussion sampling Designation (%) Smooth Slockensided Calcite SON Sonic drilling TCR **Total Core** Iron Oxide POL Polished Quartz Recovery (%) Refer to explanatory notes for details of abbreviations and basis of descriptions CARDNO (QLD) PTY LTD

<<DrawingFile>>

M30863 STX1904G.GPJ

CARDNO CORED BOREHOLE

Log

CARDNO 2.01.6 LIB.GLB I

Client: Hole No: STX1904G CO Coal Project: Styx Basin Geotechnical Investigation Styx Basin Location: Job No: M30863 Sheet: 5 of 11 Position: E772389.090 N7487158.620 55 MGA94 Angle from Horizontal: 90° Surface Elevation: 36.358 m AHD Rig Type: UDR650 Mounting: Truck **Driller: Waratah Coal** Casing Diameter: **Bit Condition:** Contractor: Waratah Coal Bit Type: Logged By: AD Date Started: 18/9/19 Date Completed: 22/9/19 Checked By: Material Description **Defect Description** Coring (m AHD) SOIL TYPE, plasticity or particle **Estimated** Average Depth (m) Weathering Strength Is₍₅₀₎ MPa characteristic, colour, secondary Natural RQD (%) Graphic Log Method 8 Additional Data Fluid & minor components Defect DEFECT TYPE, orientation, TCR ROCK NAME, grain size and type, colour, fabric and texture, 씸 Axial O - Diametr Spacing shape, roughness, infilling (mm) 8 8 8 8 1.0 or coating, thickness, other _ ≅ ± ∄ ⊞ inclusions & minor components SILTSTONE, dark-grey, bioturbation, rare coal inclusions, soft sediment deformation (continued) 40.49 m: DB 40.50 - 40.68 m: thermally altered zone, carbonate veins 40.68 m: DB 40 90m SANDSTONE, fine to medium grained, grey, soft sediment deformation 41 100 100 41.34m -5 SILTSTONE, black, dark-grey, minor laminations, minor coal inclusions — 41.50 m: DB — 41.60 m: DB -41.82 m: DB 42 INTERLAMINATED SANDSTONE AND SILTSTONE, fine grained, laminated, grey, dark-grey, laminations at 5-10 degrees -6 42.89 m: VN, IR, carbonate 42.86 - 42.94 m: thermally altered zone 42.94 m: DB 43.08 m: DB 43.46 m: DB 43 43.46m SANDSTONE, fine to medium grained, grey, with rare siltstone laminations, laminations at 15-20 degrees 100 100 44 -44.63 m: JT, 40°, PR, RF 44.82m INTERLAMINATED SANDSTONE AND
CARBONACEOUS SILTSTONE, fine grained, laminated, grey, black, laminations at 5-10 БĞ 45 45.13m degrees COAL, black 45.20 - 45.34 m: rubbly core .9 SILTSTONE, dark-grey 45.57 m: DB 45.96 m: SZ, 60°, PR, POL 46 INTERBEDDED SANDSTONE AND 46.33 m: DB 46.39 m: DB 46.48 m: DB 46.66 m: SZ, 40°, CU -10 SILTSTONE, grey, dark-grey 97 97 46.76 - 46.79 m: multiple spider webbing veins - 47.40 m: DB - 47.47 - 47.57 m: thermally altered zone, minor carbonate veining -11 SANDSTONE, medium grained, massive, grev 48 48.13 m: VN, 55°, PR -12 11.11.11 SILTSTONE 48.90m COAL 49 INTERLAMINATED SILTSTONE AND SANDSTONE, fine grained, laminated, dark-grey, grey, fining upward, laminations at 15 and 5 degrees 100 100 49.17 - 49.35 m: SZmultiple reverse faults, 60°, PR -13 49 51 m· DR SANDSTONE, fine to medium grained, grey, minor laminations, fining upwards 49.78 m: JT, 66°, PR, RF 49.93 m: DB WATER DRILLING ROCK STRENGTH DEFECT TYPE PLANARITY COATING Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling Rock roller Rotary core (85mm) Rotary core (61.94mm) Diatube concrete coring Push tube Water Level Extremly High Very High High Medium Curved Clean Joint AD/T HFA VH Sheared zone DIS Discontinuous SN Stained Bedding Parting Seam Irregular Planar VNR CT Veneer (thin or patchy) Coating (up to 1mm) water inflow Low Very Low ■ water outflow Foliation Stepped INFILL MATERIALS ν̈́L Vein Cleavage Crushed Seam ٧N UN Undulose ROCK QUALITY DESCRIPTIONS **ROCK WEATHERING** CL CS Carbonaceus X MU ROUGHNESS Unidentified minteral Fresh Fresh Slightly Weathered Distinctly Weathered Moderately Weathered Highly Weathered Extremly Weathered MS Secondary mineral Chlorite VR RF Very Rough Rough RQD Rock Quality Fracture Zone Drift Lift Push tube Percussion sampling Designation (%) Handing Break Drilling Break Smooth Slockensided Calcite SON Sonic drilling TCR **Total Core** Iron Oxide POL Polished Quartz Recovery (%) Refer to explanatory notes for details of abbreviations and basis of descriptions CARDNO (QLD) PTY LTD

<<DrawngFile>>

M30863 STX1904G.GPJ

CARDNO CORED BOREHOLE

Log

CARDNO 2.01.6 LIB.GLB I

Client: Hole No: STX1904G CO Coal Project: Styx Basin Geotechnical Investigation Styx Basin Location: Job No: M30863 Sheet: 6 of 11 Position: E772389.090 N7487158.620 55 MGA94 Angle from Horizontal: 90° Surface Elevation: 36.358 m AHD Rig Type: UDR650 Mounting: Truck **Driller: Waratah Coal** Casing Diameter: **Bit Condition:** Contractor: Waratah Coal Bit Type: Logged By: AD Date Started: 18/9/19 Date Completed: 22/9/19 Checked By: Material Description **Defect Description** Coring (m AHD) SOIL TYPE, plasticity or particle (E **Estimated** Average Weathering Strength Is₍₅₀₎ MPa characteristic, colour, secondary Natural RQD (%) Graphic Log Depth (Method 8 Additional Data Fluid & minor components Defect DEFECT TYPE, orientation, TCR ROCK NAME, grain size and type, colour, fabric and texture, Axial O - Diametr Spacing 퓝 shape, roughness, infilling (mm) 8 8 8 8 1.03 or coating, thickness, other _ ≅ ± ∄ ⊞ inclusions & minor components SANDSTONE, fine to medium grained, grey, minor laminations, fining upwards (continued) -14 50.40 - 50.50 m: minor calcite veining, 100 100 50.89 m: VN, 65°, ST COAL, black 51 SILTSTONE, massive, dark-grey, black, minor 51.28m 51.32 m: SZ, 55°, PR, SL 51.33 m: DB -15 SANDSTONE, fine grained, laminated, grey, dark-grey, with siltstone laminations 51.63 - 51.69 m: thermally altered zone, minor carbonate veining 51.97 m: DB 52 52.24m SILTSTONE, laminated, dark-grey 52.50 m: DB 52.56 m: DB 52.58 m: DB 52.64 m: JT, 45°, PR, RF 100 100 INTERLAMINATED SILTSTONE AND SANDSTONE, fine grained, laminated, dark-grey, grey, sub-horizontal laminations 53 -17 53.39 m: DB 53.72 - 53.79 m: thermally altered zone, minor carbonate veining 53.79m SANDSTONE, fine to medium grained, laminated, grey, with minor silty laminations 54 54.52 m: DB COAL, black, minor sub-vertical calcite veins - 54.70 m: DB - 54.75 m: DB - 54.78 m: DB - 55.06 m: DB SILTSTONE, massive, black, dark-grey, carbonaceous at top of unit БÃ 55 55.06 - 55.20 m; SZ, 60°, PR, multiple shearing planes 55.29 m: DB 55.32 m: DB 55.62 m: DB -19 SANDSTONE, fine grained, laminated, grey, rare silty laminations 99 99 55.79 m: DB 55.94 m: DB 56 56.08 m: SZ. 45°. PR 56.28 m: DB -20 -56.43 m: SZ, 55°, PR 56.83 m; SZ, 45° 57 SILTSTONE, laminated, grey, dark-grey, with minor sandstone laminations 57.11 m: SZ, 55°, PR 57.13 - 57.16 m: core loss -21 -57.38 m: SZ, 80°, PR -57.51 - 57.57 m: rubbly core -57.65 m: JT, 40°, PR, S -57.78 m: DB 57.96 m: DB 58 - 58.07 m: DB 58.08 - 58.17 m: thermally altered -22 58 18 m· VN 20° PR -58.18 m: VN, 20°, PR -58.27 - 58.31 m: SM, 10°, PR -58.36 - 58.46 m: SZ, rubbly core -58.60 m: DB -58.69 m: VN, 50°, PR -58.81 - 58.90 m: coal lamination 100 10 59 -23 58.90 - 60.00 m: SZ, multiple faults at 59.60 m: SM, 30°, PR DRILLING WATER ROCK STRENGTH DEFECT TYPE PLANARITY COATING Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling Rock roller Rotary core (85mm) Rotary core (61.94mm) Diatube concrete coring Push tube Water Level Extremly High Clean Joint Curved Very High High Medium DIS AD/T HFA Sheared zone Discontinuous SN Stained Bedding Parting Seam Irregular Planar VNR CT Veneer (thin or patchy) Coating (up to 1mm) water inflow Low Very Low ■ water outflow Foliation Stepped INFILL MATERIALS ν̈́L Vein Cleavage Crushed Seam ٧N UN Undulose **ROCK QUALITY ROCK WEATHERING** CL CS Carbonaceus X MU ROUGHNESS DESCRIPTIONS Unidentified minteral Fresh Fresh Slightly Weathered Distinctly Weathered Moderately Weathered Highly Weathered Extremly Weathered MS Secondary mineral Chlorite VR RF Very Rough Rough Fracture Zone Drift Lift Handing Break Drilling Break RQD Rock Quality Push tube Percussion sampling Designation (%) Smooth Slockensided Calcite SON Sonic drilling TCR **Total Core** Iron Oxide POL Polished Quartz Recovery (%) Refer to explanatory notes for details of abbreviations and basis of descriptions CARDNO (QLD) PTY LTD

<<DrawingFile>>

M30863 STX1904G.GPJ

CARDNO CORED BOREHOLE

Log

CARDNO 2.01.6 LIB.GLB I

Client: Hole No: STX1904G CO Coal Project: Styx Basin Geotechnical Investigation Styx Basin Location: Job No: M30863 Sheet: 7 of 11 Position: E772389.090 N7487158.620 55 MGA94 Angle from Horizontal: 90° Surface Elevation: 36.358 m AHD Rig Type: UDR650 Mounting: Truck **Driller: Waratah Coal** Casing Diameter: **Bit Condition:** Contractor: Waratah Coal Bit Type: Logged By: AD Date Started: 18/9/19 Date Completed: 22/9/19 Checked By: Material Description **Defect Description** Coring (m AHD) SOIL TYPE, plasticity or particle (E **Estimated** Average Weathering Strength Is₍₅₀₎ MPa Natural RQD (%) characteristic, colour, secondary Graphic Log Depth (Method 8 Additional Data Fluid & minor components Defect DEFECT TYPE, orientation, TCR ROCK NAME, grain size and type, colour, fabric and texture, 씸 Axial O - Diametr Spacing shape, roughness, infilling (mm) 8 8 8 8 1.03 or coating, thickness, other _ ≅ ± ∄ ⊞ inclusions & minor components SILTSTONE, laminated, grey, dark-grey, with minor sandstone laminations (continued) 60.00 - 60.22 m: SZ, rubbly core 60.28 m: SZ, 60°, PR 60.33 - 60.43 m: thermally altered -24 zone, calcite veining 100 10 60.50 - 61.37 m: SZ, plastic overturning of beds and faulting at 65 and 45 degrees 61 61.39m -25 SANDSTONE, fine grained, laminated, grey, with minor silty laminations -61.76 m: VN. 10° 62.02m 62 CARBONACEOUS SILTSTONE, black, with coal laminations 100 76 \downarrow -26 62.40 m: DB 62.50 m: DB 62.55 m: DB J J \downarrow \downarrow 63 63.00 m: DB 63.20m 63.18 m: SZ, 45°, PR INTERLAMINATED SILTSTONE AND SANDSTONE, fine grained, laminated, -27 63.33 m: JT, 45° dark-grey, grey 63.48 - 63.92 m: thermally altered zone, calcite veining 64 63.92 - 64.90 m: SZ, faulting, brecciation, plastic deformation -28 64.58m 64.74m COAL black 100 99 64.90m SILTSTONE, dark-grey БÃ SANDSTONE, fine grained, laminated, grey, dark-grey, with silty laminations 65 64.90 - 65.54 m: thermally altered zone, partially brecciated by carbonate -29 veins 65.77m $\overline{\downarrow}$ CARBONACEOUS SILTSTONE, black, with minor coal laminations 66 66.05 m: SZ, 60°, PR SANDSTONE, grey, with minor silty 66.23 - 66.25 m: rubbly core 66.26 m: VN, 15°, carbonate -30 -66.53 m: DB -66.54 m: DB -66.60 m: SZ, 50°, PR -66.62 m: DB -66.72 m: DB -66.77 m: DB 66.76m SILTSTONE, laminated, dark-grey 66.89 m: DB -31 67.03 m: DB 66.95 - 67.19 m: SZ, faults at 65 and 45 degrees 67.20 - 67.51 m: thermally altered zone, carbonate veins 100 100 68 68.20 m: DB 67.52 - 69.23 m: SZ, faults at 70 and -32 67.52 - 69.23 m: SZ, Tautis at 70 and 45 degrees, plastic deformation, minor carbonate veining 68.40 m: DB 68.58 m: DB 68.71 m: DB 69 68.78 m: DB 69.02 - 69.07 m: multiple drill breaks -33 69.38 m: VN. 50°. PR 69.48 - 69.60 m: SZ, soft sediment 100 100 69.77m 69.83 m; SZ, 45° DRILLING WATER ROCK STRENGTH DEFECT TYPE PLANARITY COATING Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling Rock roller Rotary core (85mm) Rotary core (61.94mm) Diatube concrete coring Push tube Water Level Extremly High Clean Joint Curved Very High High Medium DIS AD/T HFA Sheared zone Discontinuous SN Stained Bedding Parting Seam Irregular Planar VNR CT Veneer (thin or patchy) Coating (up to 1mm) water inflow Low Very Low ■ water outflow Foliation Stepped INFILL MATERIALS ν̈́L Vein Cleavage Crushed Seam ٧N UN Undulose **ROCK QUALITY ROCK WEATHERING** CL CS Carbonaceus X MU ROUGHNESS DESCRIPTIONS Unidentified minteral Fresh Fresh Slightly Weathered Distinctly Weathered Moderately Weathered Highly Weathered Extremly Weathered MS Secondary mineral Chlorite VR RF Very Rough Rough RQD Rock Quality Fracture Zone Drift Lift Push tube Percussion sampling Designation (%) Handing Break Drilling Break Smooth Slockensided Calcite SON Sonic drilling TCR **Total Core** Iron Oxide POL Polished Quartz Recovery (%) Refer to explanatory notes for details of abbreviations and basis of descriptions CARDNO (QLD) PTY LTD

<<DrawingFile>>

M30863 STX1904G.GPJ

CARDNO CORED BOREHOLE

Log

CARDNO 2.01.6 LIB.GLB I

Client: Hole No: STX1904G CO Coal Project: Styx Basin Geotechnical Investigation Location: Styx Basin Job No: M30863 Sheet: 8 of 11 Position: E772389.090 N7487158.620 55 MGA94 Angle from Horizontal: 90° Surface Elevation: 36.358 m AHD Rig Type: UDR650 Mounting: Truck **Driller: Waratah Coal** Casing Diameter: **Bit Condition:** Contractor: Waratah Coal Bit Type: Date Completed: 22/9/19 Date Started: 18/9/19 Logged By: AD Checked By: Material Description **Defect Description** Coring (m AHD) SOIL TYPE, plasticity or particle (E **Estimated** Average Weathering Strength Is₍₅₀₎ MPa Natural RQD (%) characteristic, colour, secondary Graphic Log Depth (Method 8 Additional Data Fluid & minor components Defect DEFECT TYPE, orientation, TCR ROCK NAME, grain size and type, colour, fabric and texture, Axial O - Diametr Spacing 귐 shape, roughness, infilling (mm) 8 8 8 8 1.03 or coating, thickness, other _ ≅ ± ∄ ⊞ inclusions & minor components -70.01 m: SZ, 65°, ST -70.10 m: SZ, 65°, CU SANDSTONE, fine grained, grey, with siltstone laminations (continued) -34 70.86 m; SZ, 45°, PR, plastic deformation
71.03 m: DB
71.04 - 71.10 m: thermally altered zone, minor carbonate veins
71.11 m: DB
71.39 m: DB 100 100 71.40m -35 INTERLAMINATED SANDSTONE AND SILTSTONE, fine grained, laminated, grey, dark-grey - 71.70 m: DB 72 72.07 m: DB 72.09 m: SZ, 45°, PR 72.30m -36 SANDSTONE, fine to medium grained, grey 72.53 m: DB -72.68 m: DB 72.97 m: DB 73 73.31m -37 SILTSTONE, dark-grey, with rare sandstone 100 100 - 73.77 m: DB 74 -38 - 74.34 m: DB - 74.50 m: DB БĞ - 75.00 m: DB 75 -39 75.55 m: DB 75.57 m: DB 75.65 m: DB 75.78 m: DB 75.85 m: DB 76 75.90 - 76.30 m: multiple sub-vertical veins 76.35 - 76.36 m: SZ, 45°, PR, fault -40 breccia 76.39 m: VN, 45°, PR 76.47 m: DB 76.47 m: DB 76.60 m: DB 76.83 m: VN, 40°, PR 76.93 m: VN, 45°, UN 77.01 m: DB, 40°, PR 77.22 m: VN, 45°, PR 77.20 m: DB 100 100 -41 77.41 ni. 77.63 m: Db 77.88 m: DB 78 -42 78.43 m: DB 78.62 - 78.66 m: multiple veins, 65°, PR √78.66 m: DB 79 100 100 -43 DRILLING WATER ROCK STRENGTH DEFECT TYPE PLANARITY COATING Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling Rock roller Rotary core (85mm) Rotary core (61.94mm) Diatube concrete coring Push tube Water Level Extremly High Clean Joint Curved Very High High Medium DIS AD/T HFA Sheared zone Discontinuous SN Stained Bedding Parting Seam Irregular Planar VNR CT Veneer (thin or patchy) Coating (up to 1mm) water inflow Low Very Low ■ water outflow Foliation Stepped INFILL MATERIALS ν̈́L Vein Cleavage Crushed Seam ٧N UN Undulose **ROCK QUALITY ROCK WEATHERING** CL CS Carbonaceus X MU ROUGHNESS DESCRIPTIONS Unidentified minteral Fresh Fresh Slightly Weathered Distinctly Weathered Moderately Weathered Highly Weathered Extremly Weathered MS Secondary mineral Chlorite VR RF Very Rough Rough Fracture Zone Drift Lift Handing Break Drilling Break RQD Rock Quality Push tube Percussion sampling Designation (%) Smooth Slockensided Calcite SON Sonic drilling TCR **Total Core** Iron Oxide POL Polished Quartz Recovery (%) Refer to explanatory notes for details of abbreviations and basis of descriptions CARDNO (QLD) PTY LTD

Monitoring Tools

18/10/2019 10:44 10:0:000 Datgel AGS RTA, Photo,

<<DrawngFile>>

M30863 STX1904G.GPJ

CARDNO CORED BOREHOLE

CARDNO 2.01.6 LIB.GLB Log

Client: CO Coal Hole No: STX1904G Project: Styx Basin Geotechnical Investigation Location: Styx Basin Job No: M30863 Sheet: 9 of 11 Position: E772389.090 N7487158.620 55 MGA94 Angle from Horizontal: 90° Surface Elevation: 36.358 m AHD Rig Type: UDR650 Mounting: Truck **Driller: Waratah Coal** Contractor: Waratah Coal Casing Diameter: **Bit Condition:** Bit Type: Date Completed: 22/9/19 Date Started: 18/9/19 Logged By: AD Checked By: Material Description **Defect Description** Coring (m AHD) SOIL TYPE, plasticity or particle Average Natural (E **Estimated** Weathering Strength Is₍₅₀₎ MPa RQD (%) characteristic, colour, secondary Graphic Log Depth (Method 8 Additional Data Fluid & minor components Defect DEFECT TYPE, orientation, TCR (ROCK NAME, grain size and type, colour, fabric and texture, 씸 Axial O - Diametr Spacing shape, roughness, infilling (mm) 8 8 8 8 0.3 or coating, thickness, other _ ≅ ± ∄ ⊞ inclusions & minor components SILTSTONE, dark-grey, with rare sandstone laminations (continued) -44 80 58 m: DB 100 100 81 81.04 m: DB 81.05 m: VN, 60°, PR -45 81.73 m: DB 82 82.09 m: DB 82.34 m: VN, 60°, CU -46 82.61 m: DB 82.71 - 82.83 m: thermally altered zone, carbonate veining 82.85 m: DB 100 100 83 83.13 m: DB -47 83.57 m: DB - 83.73 m: VN, 50°, ST, multiple - 83.83 m: DB 84 -84.07 m: VN, 55°, PR -48 84.38 m: DB ~ 84.46 m: DB ~ 84.57 m: VN, 40°, PR ~ 84.68 m: VN, 60°, PR БĞ 85 85.17 m: DB -49 85.36 m: DB 100 100 - 85.80 m: DB - 85.90 m: SZ, 70°, PR 86 -50 86.71 m: VN, 50°, PR 86.80 m: JT, 50°, PR, RF 86.93 - 87.10 m: thermally altered zone, carbonate veining 87.13 - 87.25 m: SZ, faulting at 70 and 87.13 - 87.25 m: 52., raturing at 7 40 degrees 87.45 m: DB 87.53 m: DB 87.62 m: DB 87.70 m: DB 87.88 - 87.95 m: sandstone bed -51 -88 88.06 m: DB 88.10 m: VN, 50°, PR -52 88.40 m: SZ, 45°, UN 88.55 m: DB 100 100 88.83 m: SZ, 50°, PR, SL 89 89.34 m: SZ, 45°, PR, S -53 89.94 m: DB DRILLING WATER ROCK STRENGTH DEFECT TYPE PLANARITY COATING Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling Rock roller Rotary core (85mm) Rotary core (61.94mm) Diatube concrete coring Push tube Water Level Extremly High Very High High Medium Curved Discontinuous Clean Joint DIS AD/T HFA Sheared zone SN Stained Bedding Parting Seam Irregular Planar VNR CT Veneer (thin or patchy) Coating (up to 1mm) water inflow Low Very Low ■ water outflow Foliation Stepped INFILL MATERIALS ν̈́L Vein Cleavage Crushed Seam ٧N UN Undulose ROCK QUALITY DESCRIPTIONS **ROCK WEATHERING** CL CS Carbonaceus X MU ROUGHNESS Unidentified minteral Fresh Fresh Slightly Weathered Distinctly Weathered Moderately Weathered Highly Weathered Extremly Weathered MS Secondary mineral Chlorite VR RF Very Rough Rough Fracture Zone Drift Lift Handing Break Drilling Break RQD Rock Quality Push tube Percussion sampling Designation (%) Smooth Slockensided Calcite SON AH Sonic drilling TCR **Total Core** Iron Oxide POL Polished Quartz Recovery (%) Refer to explanatory notes for details of abbreviations and basis of descriptions CARDNO (QLD) PTY LTD

<<DrawingFile>>

M30863 STX1904G.GPJ

CARDNO CORED BOREHOLE

Log

CARDNO 2.01.6 LIB.GLB I

Client: Hole No: STX1904G CO Coal Project: Styx Basin Geotechnical Investigation Styx Basin Location: Job No: M30863 Sheet: 10 of 11 Position: E772389.090 N7487158.620 55 MGA94 Angle from Horizontal: 90° Surface Elevation: 36.358 m AHD Rig Type: UDR650 Mounting: Truck **Driller: Waratah Coal** Contractor: Waratah Coal Casing Diameter: **Bit Condition:** Bit Type: Logged By: AD Date Started: 18/9/19 Date Completed: 22/9/19 Checked By: Material Description **Defect Description** Coring (m AHD) SOIL TYPE, plasticity or particle **Estimated** Average Depth (m) Weathering Strength Is₍₅₀₎ MPa Natural RQD (%) characteristic, colour, secondary Graphic Log Method 8 Additional Data Fluid & minor components Defect DEFECT TYPE, orientation, TCR ROCK NAME, grain size and type, colour, fabric and texture, 씸 Axial O - Diametr Spacing shape, roughness, infilling (mm) 8 8 8 8 1.0 or coating, thickness, other _ ≅ ± ∄ ⊞ inclusions & minor components SILTSTONE, dark-grey, with rare sandstone laminations (continued) 100 100 -54 SANDSTONE, medium grained, laminated, grey, with siltstone laminations and gravel sized inclusions 90.60m 1 1 SANDSTONE, fine grained, massive, grey, 90.87 - 90.88 m: VN, IR 91 with minor siltstone at base of unit -91.04 m: DB 100 70 -55 91.60m 91.61 m: DB 91.64 - 91.68 m: rubbly core 91.66 m: SZ, 60°, PR 91.75 - 92.28 m: thermally altered INTERBEDDED SANDSTONE AND SILTSTONE, fine grained, laminated, grey, 92 zone 92.00 - 92.25 m: rubbly core 91.80 - 92.50 m: multiple veins, 80°, -56 PR. carbonate 92.61 m: DB 1 100 97 92.98 m: DB 93 93.32 m: tuff -57 93 61 m: DB 94 -58 94.74 m: DB 94.74 - 94.78 m: tuff 94.78 m: DB 100 100 БÃ 95 1 - 95.15 m: DB -59 96 96.03 m: DB -60 96.60 m: DB 97.17 m: DB -61 97 63m 97.80m SANDSTONE, medium to coarse grained, massive, dark-grey 100 100 97.80 - 98.28 m: thermally altered 98 INTERLAMINATED SANDSTONE AND SILTSTONE, fine grained, laminated, grey, zone, minor sub-vertical carbonate veins dark-grey -62 98.61 m: DB 99 98.95 - 99.15 m; bioturbation -63 I I II I I100 100 SANDSTONE, fine grained, laminated, grey, laminated at 5 degrees I I I99.93 m: DB DRILLING WATER ROCK STRENGTH DEFECT TYPE PLANARITY COATING Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling Rock roller Rotary core (85mm) Rotary core (61.94mm) Diatube concrete coring Push tube Water Level Extremly High Joint Curved Clean Very High High Medium AD/T HFA VH Sheared zone DIS Discontinuous SN Stained Bedding Parting Seam Irregular Planar VNR CT Veneer (thin or patchy) Coating (up to 1mm) water inflow Low Very Low ■ water outflow Foliation Stepped INFILL MATERIALS ν̈́L Vein Cleavage Crushed Seam ٧N UN Undulose **ROCK QUALITY ROCK WEATHERING** Carbonaceus CL CS X MU ROUGHNESS DESCRIPTIONS Unidentified minteral Fresh Fresh Slightly Weathered Distinctly Weathered Moderately Weathered Highly Weathered Extremly Weathered MS Secondary mineral Chlorite VR RF Very Rough Rough Fracture Zone Drift Lift Handing Break Drilling Break RQD Rock Quality Push tube DW Percussion sampling Designation (%) Smooth Slockensided Calcite SON Sonic drilling TCR **Total Core** Iron Oxide POL Polished Quartz Recovery (%) Refer to explanatory notes for details of abbreviations and basis of descriptions CARDNO (QLD) PTY LTD

M30863 STX1904G.GPJ

CARDNO CORED BOREHOLE

CARDNO 2.01.6 LIB.GLB Log

Client: Hole No: STX1904G CO Coal Project: Styx Basin Geotechnical Investigation Location: Styx Basin Job No: M30863 Sheet: 11 of 11 Position: E772389.090 N7487158.620 55 MGA94 Angle from Horizontal: 90° Surface Elevation: 36.358 m AHD Rig Type: UDR650 Mounting: Truck **Driller: Waratah Coal** Contractor: Waratah Coal Casing Diameter: **Bit Condition:** Bit Type: Date Started: 18/9/19 Date Completed: 22/9/19 Logged By: AD Checked By: Material Description **Defect Description** Coring RL (m AHD) SOIL TYPE, plasticity or particle Average Natural **Estimated** Depth (m) Weathering Strength Is₍₅₀₎ MPa characteristic, colour, secondary RQD (%) Graphic Log Method 8 Additional Data Fluid & minor components Defect DEFECT TYPE, orientation, TCR (ROCK NAME, grain size and type, Axial O - Diametr Spacing shape, roughness, infilling (mm) 8 8 8 8 0.3 colour, fabric and texture. or coating, thickness, other _ ≅ ± £ ⊞ inclusions & minor components INTERLAMINATED SANDSTONE AND SILTSTONE, fine grained, laminated, grey, dark-grey, fining upwards (continued) -64 - 100.54 m: DB 1 1 — 101.05 - 101.08 m: tuff ~ 101.15 m: DB 100 100 INTERLAMINATED SANDSTONE AND -65 SILTSTONE, fine to medium grained, laminated, grey, dark-grey, with rare gravelly - 101.74 - 101.80 m: gravelly band 102 102 26 m: fluid escape structures -66 103 -67 HQ3 103.64 m: DB 100 100 104 -68 - 104.37 - 104.41 m: gravelly band 105 -69 105.82m INTERBEDDED SANDSTONE AND 105.90 - 106.07 m: fluid escape 106 SILTSTONE, fine to coarse grained, layered, grey, dark-grey, soft sediment deformation 99 99 -70 I I I107 CORE LOSS 0.02m (107.21-107.23) TERMINATED AT 107.23 m -71 Target depth 108 -72 109 I I IWATER DRILLING ROCK STRENGTH DEFECT TYPE PLANARITY COATING Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling Rock roller Rotary core (85mm) Rotary core (61.94mm) Diatube concrete coring Push tube AD/V AD/T HFA Water Level Extremly High Clean Joint Curved Very High High Medium DIS Sheared zone Discontinuous SN Stained Bedding Parting Seam Irregular Planar VNR CT Veneer (thin or patchy) Coating (up to 1mm) water inflow Low Very Low ■ water outflow Foliation ST Stepped INFILL MATERIALS ν̈́L Vein Cleavage Crushed Seam ٧N UN Undulose ROCK QUALITY DESCRIPTIONS **ROCK WEATHERING** CL CS Carbonaceus X MU ROUGHNESS Unidentified minteral Fresh Fresh Slightly Weathered Distinctly Weathered Moderately Weathered Highly Weathered Extremly Weathered MS Secondary mineral Chlorite VR RF Very Rough Rough Fracture Zone Drift Lift Handing Break Drilling Break RQD Rock Quality Push tube DW Percussion sampling Designation (%) Smooth Slockensided CA Fe Qz Calcite SON AH Sonic drilling TCR **Total Core** Iron Oxide POL Polished Quartz Recovery (%) Refer to explanatory notes for details of abbreviations and basis of descriptions CARDNO (QLD) PTY LTD

STX1904G Core Photographs

4C core Box 1

4C core Box 3

4C core Box 2

4C core Box 4

4C core Box 5

4C core Box 7

4C core Box 6

4C core Box 8

STX1904G Core Photographs

4C core Box 9

HQ core Box 1

HQ core Box 3 HQ core Box 4

HQ core Box 2

HQ core Box 5

HQ core Box 7 HQ core Box 8

HQ core Box 6

HQ core Box 9

HQ core Box 11 HQ core Box 12

HQ core Box 10

HQ core Box 13

HQ core Box 15 HQ core Box 16

HQ core Box 14

HQ core Box 17

HQ core Box 19

HQ core Box 18

HQ core Box 20

STX1904G Core Photographs

HQ core Box 21

<<Drawing File>> 04/10/2019 10:56 10.0.000 Datgel AGS RTA, Photo, Monitoring Tools

CARDNO 2.01.6 LIB.GLB Log CARDNO NON-CORED M30863_STYX_OPEN END PERMEABILITY.GPJ

BOREHOLE LOG SHEET

Hole No: STX1901B Client: Central Queensland Coal Pty Ltd Project: Styx Basin Permeability Testing Location: Styx Basin Job No: M30863 Sheet: 1 of 1 Position: E772356.260 N7489012.160 55 MGA94 Angle from Horizontal: 90° Surface Elevation: 31.849 m AHD Rig Type: Truck Mounted Drill Rig Mounting: Truck Driller: Waratah Coal Casing Diameter: Contractor: Date Started: 18/8/19 Date Completed: 18/8/19 Logged By: AD Checked By: AW Drilling Sampling & Testing Material Description (m AHD) Depth (m) Monitoring Well Details Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure Resistance Graphic Log Consistency Relative Density Method Moisture Condition Casing Sample or STRUCTURE & Other Observations Field Test 귒 CLAY: dark-red-brown, trace fine grained sand, MPS 1 LL 65 P75 95 31.5 0.5 СН St 31.0 1.0 Clayey SAND: fine to coarse grained, pale-red-brown, MPS 2 LL 45 P75 25 30.5 Rotary Air Drilling SC 1.5 š 30.0 2.0 D Clayey SAND: fine to coarse grained, pale-red-brown, MPS 2 LL 45 P75 30 Bentonite Seal 29.5 2.5 SC 29.0 -3.0 TERMINATED AT 3.00 m IEMMINATED AT 3.00 m
Target depth
Open ended PVC aproximatly 100mm in
diameter was installed and sealed with
bentonite and backfilled with hand
compacted earth.
PVC joins where cemented and secured
with screwe during installation. with screws during installation.
Stickup of aproximatly 500mm was cut and capped with an end cap. 28.5 3.5 METHOD PENETRATION FIELD TESTS SAMPLES SOIL CONSISTENCY SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Very Soft Very Easy (No Resistance) Ripper Hand auger ΗP Hand/Pocket Penetrometer Disturbed sample Environmental sample S Soft Firm Easy Firm DCP -Dynamic Cone Penetrometer Push tube Sonic drilling Air hammer Stiff Very Stiff Hard Thin wall tube 'undisturbed' Hard Very Hard (Refusal) PSP Perth Sand Penetrometer MOISTURE MC Moisture Content WATER Percussion sampler Plate Bearing Test Percussion sampler Short spiral auger Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling Dry Moist Wet Plastic limit RELATIVE DENSITY Water Level on Date IMP Borehole Impression Test AD/V AD/T HFA WB Very Loose Loose Medium Dense Dense VL shown Photoionisation Detector PID water inflow Vane Shear; P=Peak, Liquid limit Moisture content ■ water outflow R=Resdual (uncorrected kPa) Rock roller VD Very Dense Refer to explanatory notes for details of abbreviations and basis of descriptions CARDNO (QLD) PTY LTD

STX1901B

0.00 - 1.00 m 1.00 - 2.00 m

2.00 – 3.00m

10.0.000 Datgel AGS RTA, Photo, Monitoring Tools

CARDNO 2.01.6 LIB.GLB Log CARDNO NON-CORED M30863_STYX_OPEN END PERMEABILITY.GPJ <-DrawingFile>> 04/10/2019 10:56

BOREHOLE LOG SHEET

Hole No: STX1901C Client: Central Queensland Coal Pty Ltd Project: Styx Basin Permeability Testing Location: Styx Basin Job No: M30863 Sheet: 1 of 2 Position: E772380.060 N7489009.460 55 MGA94 Angle from Horizontal: 90° Surface Elevation: 30.408 m AHD Rig Type: Truck Mounted Drill Rig Mounting: Truck Driller: Waratah Coal Casing Diameter: Contractor: Date Started: 18/8/19 Date Completed: 18/8/19 Checked By: AW Logged By: AD Drilling Sampling & Testing Material Description (m AHD) Depth (m) Monitoring Well Details Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure Resistance Graphic Log Consistency Relative Density Method Moisture Condition Casing Sample or STRUCTURE & Other Observations Field Test 귒 CLAY: dark-brown, trace fine grained sand, MPS 1 LL 70 P75 95 30 СН Clayey SAND: fine to coarse grained, red-brown, MPS 2 LL 45 P75 25 29 SC 28 Clayey SAND: fine to medium grained, pale-brown, MPS 2 LL 45 P75 15 27 SC Clayey SAND: fine to medium grained, pale-brown, MPS 2 LL 45 P75 30 26 Not Encountered Rotary Air Drilling D 25 D 24 Clayey SAND: fine to medium grained, pale-brown, MPS 2 LL 45 P75 20 23 22 SC 21 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Standard Penetration Test Bulk disturbed sample VS Excavator bucket Very Soft Very Easy (No Resistance) Ripper Hand auger Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' ΗP Hand/Pocket Penetrometer S Soft Firm Easy Firm DCP -Dynamic Cone Penetrometer Push tube Sonic drilling Air hammer Stiff Very Stiff Hard Hard Very Hard (Refusal) PSP Perth Sand Penetrometer MOISTURE MC Moisture Content WATER Percussion sampler Plate Bearing Test Percussion sampler Short spiral auger Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling Dry Moist Wet Plastic limit RELATIVE DENSITY Water Level on Date IMP Borehole Impression Test AD/V AD/T HFA WB Very Loose Loose Medium Dense Dense VL shown Photoionisation Detector PID water inflow Vane Shear; P=Peak, Liquid limit Moisture content ■ water outflow R=Resdual (uncorrected kPa) VD Rock roller Very Dense Refer to explanatory notes for details of abbreviations and basis of descriptions CARDNO (QLD) PTY LTD

10.0.000 Datgel AGS RTA, Photo, Monitoring Tools

<<Drawing File>> 04/10/2019 10:56

CARDNO 2.01.6 LIB.GLB Log CARDNO NON-CORED M30863_STYX_OPEN END PERMEABILITY.GPJ

BOREHOLE LOG SHEET

Hole No: STX1901C Client: Central Queensland Coal Pty Ltd Project: Styx Basin Permeability Testing Location: Styx Basin Job No: M30863 Sheet: 2 of 2 Position: E772380.060 N7489009.460 55 MGA94 Angle from Horizontal: 90° Surface Elevation: 30.408 m AHD Rig Type: Truck Mounted Drill Rig Driller: Waratah Coal Mounting: Truck Casing Diameter: Contractor: Date Started: 18/8/19 Date Completed: 18/8/19 Logged By: AD Checked By: AW Drilling Sampling & Testing Material Description (m AHD) Depth (m) Monitoring Well Details Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure Resistance Graphic Log Consistency Relative Density Method Moisture Condition Casing Sample or STRUCTURE & Other Observations Field Test 귒 Clayey SAND: fine to medium grained, pale-brown, MPS 2 LL 45 P75 20 (continued) 20 sc RESIDUAL SOIL Sandy CLAY: brown, fine to coarse grained sand, with fine grained, sub-rounded gravel, MPS 3 LL 45 P75 35 19 12 CI St Not Encountered Rotary Air Drilling 13 D Sandy CLAY: brown mottled dark-grey, fine to coarse grained sand, MPS 2 LL 45 P75 65 17 14.00m 14 Bentonite Seal 16 VSt CLAY: black, dark-grey, with fine to medium grained sand, MPS 1 LL 65 P75 85 15 СН TERMINATED AT 16.00 m
Target depth
Open ended PVC aproximatly 100mm in
diameter was installed and sealed with
bentonite and backfilled with hand 14 compacted earth. PVC joins where cemented and secured with screws during installation.

Stickup of aproximatly 500mm was cut and capped with an end cap. 13 18 12 19 11 METHOD PENETRATION FIELD TESTS SAMPLES SOIL CONSISTENCY SPT Standard Penetration Test VS Excavator bucket Bulk disturbed sample Very Soft Very Easy (No Resistance) Ripper Hand auger Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' ΗP Hand/Pocket Penetrometer S Soft Firm Easy Firm DCP -Dynamic Cone Penetrometer Push tube Sonic drilling Air hammer Stiff Very Stiff Hard Hard Very Hard (Refusal) PSP Perth Sand Penetrometer MOISTURE MC Moisture Content WATER Percussion sampler Plate Bearing Test Percussion sampler Short spiral auger Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling Dry Moist RELATIVE DENSITY Water Level on Date IMP Borehole Impression Test AD/V AD/T HFA WB Very Loose Loose Medium Dense Dense VL Wet Plastic limit shown Photoionisation Detector PID water inflow Vane Shear; P=Peak, Liquid limit Moisture content ■ water outflow R=Resdual (uncorrected kPa) Rock roller VD Very Dense Refer to explanatory notes for details of abbreviations and basis of descriptions CARDNO (QLD) PTY LTD

1.00 - 2.00m

2.00 – 3.00m

3.00 – 4.00m

4.00 - 5.00m 5.00 - 6.00m

6.00 – 7.00m

7.00 – 8.00m

8.00 – 9.00m

9.00 – 10.00m

10.00 – 11.00m 11.00 – 12.00m

6.00 – 7.00m

7.00 – 8.00m

8.00 – 9.00m

9.00 – 10.00m

10.00 – 11.00m 11.00 – 12.00m

13.00 - 14.00m

14.00 – 15.00m

15.00 – 16.00m

Photo, Monitoring Tools

10.0.000 Datgel AGS RTA,

<<Drawing File>> 04/10/2019 10:56

OPEN END PERMEABILITY.GPJ

CARDNO 2.01.6 LIB.GLB Log CARDNO NON-CORED M30863_STYX

BOREHOLE LOG SHEET

Hole No: STX1902B Client: Central Queensland Coal Pty Ltd Project: Styx Basin Permeability Testing Location: Styx Basin Job No: M30863 Sheet: 1 of 1 Position: E774639.490 N7485931.900 55 MGA94 Angle from Horizontal: 90° Surface Elevation: 29.857 m AHD Rig Type: Truck Mounted Drill Rig Driller: Waratah Coal Mounting: Truck Casing Diameter: Contractor: Date Started: 18/8/19 Date Completed: 18/8/19 Logged By: AD Checked By: AW Drilling Sampling & Testing Material Description (m AHD) Depth (m) Monitoring Well Details Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure Resistance Graphic Log Consistency Relative Density Method Moisture Condition Casing Sample or STRUCTURE & Other Observations Field Test 귒 Sandy CLAY: dark-brown to brown, fine to medium grained sand, MPS 1 LL 45 P75 75 29 CI Rotary Air Drilling 27 - 3 Sandy CLAY: brown mottled grey, orange becoming pale-brown mottled grey, orange, fine grained sand, MPS 1 LL 40 P75 80 RESIDUAL SOIL š 26 4.00m Bentonite Seal 25 Sandy CLAY: pale-brown mottled orange, fine to coarse grained sand, with fine grained, sub-rounded gravel, MPS 3 LL 35 P75 50 CL VSt D TERMINATED AT 6.00 m IEMMINATED AT 6.00 m
Target depth
Open ended PVC aproximatly 100mm in
diameter was installed and sealed with
bentonite and backfilled with hand
compacted earth.
PVC joins where cemented and secured
with screwe during installation. with screws during installation.
Stickup of aproximatly 500mm was cut and capped with an end cap. 23 METHOD PENETRATION FIELD TESTS SAMPLES SOIL CONSISTENCY SPT - Standard Penetration Test VS Excavator bucket Bulk disturbed sample Very Soft Very Easy (No Resistance) Ripper Hand auger ΗP Hand/Pocket Penetrometer Disturbed sample Environmental sample S Soft Firm Easy Firm DCP -Dynamic Cone Penetrometer Push tube Sonic drilling Air hammer Stiff Very Stiff Hard Thin wall tube 'undisturbed' Hard Very Hard (Refusal) PSP Perth Sand Penetrometer MOISTURE MC Moisture Content WATER Plate Bearing Test Percussion sampler Percussion sampler Short spiral auger Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling Dry Moist RELATIVE DENSITY Water Level on Date IMP Borehole Impression Test AD/V AD/T HFA WB Very Loose Loose Medium Dense Dense VL Wet Plastic limit shown Photoionisation Detector PID water inflow Vane Shear; P=Peak, Liquid limit Moisture content ■ water outflow R=Resdual (uncorrected kPa) Rock roller VD Very Dense Refer to explanatory notes for details of abbreviations and basis of descriptions CARDNO (QLD) PTY LTD

STX1902B

2.00 – 3.00m

3.00 – 4.00m

4.00 - 5.00 m 5.00 - 6.00 m

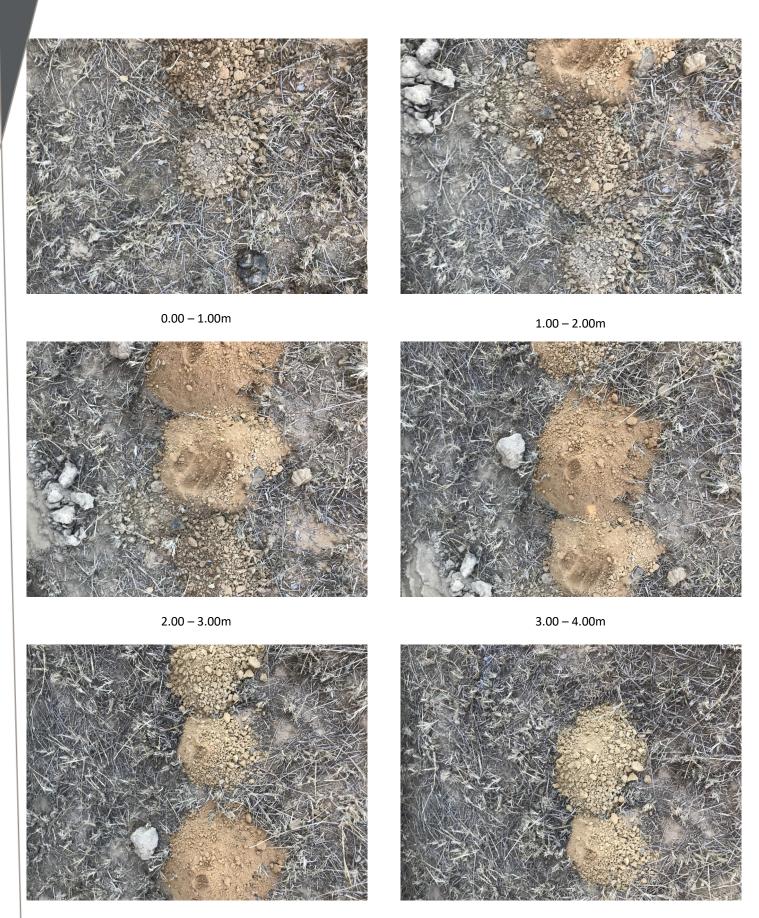
10.0.000 Datgel AGS RTA, Photo, Monitoring Tools

CARDNO 2.01.6 LIB.GLB Log CARDNO NON-CORED M30863 STYX OPEN END PERMEABILITY.GPJ <<DrawingFile>> 04/10/2019 10:56

BOREHOLE LOG SHEET

Hole No: STX1902C Client: Central Queensland Coal Pty Ltd Project: Styx Basin Permeability Testing Location: Styx Basin Job No: M30863 Sheet: 1 of 2 Position: E774622.800 N7485923.470 55 MGA94 Angle from Horizontal: 90° Surface Elevation: 29.808 m AHD Rig Type: Truck Mounted Drill Rig Driller: Waratah Coal Mounting: Truck Casing Diameter: Contractor: Date Started: 18/8/19 Date Completed: 18/8/19 Logged By: AD Checked By: AW Drilling Sampling & Testing Material Description (m AHD) Depth (m) Monitoring Well Details Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure Resistance Graphic Log Consistency Relative Density Method Moisture Condition Casing Sample or STRUCTURE & Other Observations Field Test 귒 Sandy CLAY: dark-brown to brown, fine to medium grained sand, MPS 1 LL 45 P75 75 29 CI 28 RESIDUAL SOIL Sandy CLAY: pale-brown to brown, fine to coarse grained sand, MPS 2 LL 45 P75 70 27 CI 26 Sandy CLAY: brown mottled grey, orange, fine to coarse grained sand, MPS 2 LL 45 P75 50 Not Encountered Rotary Air Drilling 25 D 24 23 CI St to VS 22 METHOD PENETRATION FIELD TESTS SAMPLES SOIL CONSISTENCY Standard Penetration Test VS Excavator bucket Bulk disturbed sample Very Soft Very Easy (No Resistance) Ripper Hand auger Disturbed sample Environmental sample Thin wall tube 'undisturbed' ΗP Hand/Pocket Penetrometer S Soft Firm DCP Dynamic Cone Penetrometer Push tube Sonic drilling Air hammer Stiff Very Stiff Hard Hard Very Hard (Refusal) PSP Perth Sand Penetrometer MOISTURE MC Moisture Content WATER Percussion sampler Plate Bearing Test Percussion sampler Short spiral auger Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling Dry Moist Wet Plastic limit RELATIVE DENSITY Water Level on Date IMP Borehole Impression Test AD/V AD/T HFA WB Very Loose Loose Medium Dense Dense VL shown Photoionisation Detector PID water inflow Vane Shear; P=Peak, Liquid limit Moisture content ■ water outflow R=Resdual (uncorrected kPa) VD Rock roller Very Dense Refer to explanatory notes for details of abbreviations and basis of descriptions CARDNO (QLD) PTY LTD

<<Drawing File>> 04/10/2019 10:56 10.0.000 Datgel AGS RTA, Photo, Monitoring Tools


CARDNO 2.01.6 LIB.GLB Log CARDNO NON-CORED M30863_STYX_OPEN END PERMEABILITY.GPJ

BOREHOLE LOG SHEET

Hole No: STX1902C Client: Central Queensland Coal Pty Ltd Project: Styx Basin Permeability Testing Location: Styx Basin Job No: M30863 Sheet: 2 of 2 Position: E774622.800 N7485923.470 55 MGA94 Angle from Horizontal: 90° Surface Elevation: 29.808 m AHD Rig Type: Truck Mounted Drill Rig Driller: Waratah Coal Mounting: Truck Casing Diameter: Contractor: Date Started: 18/8/19 Date Completed: 18/8/19 Logged By: AD Checked By: AW Drilling Sampling & Testing Material Description (m AHD) Depth (m) Monitoring Well Details Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure Resistance Graphic Log Consistency Relative Density Method Moisture Condition Casing STRUCTURE Sample or & Other Observations Field Test 귒 Sandy CLAY: brown mottled grey, orange, fine to coarse grained sand, MPS 2 LL 45 P75 50 (continued) RESIDUAL SOIL CI 19 EXTREMELY WEATHERED CLAY: dark-grey to black, with fine grained sand, MPS 1 LL 65 P75 85 СН 18 12 CLAY: grey, with fine grained sand, MPS 1 LL 50 P75 90 17 CI 13 Rotary Air Drilling 16 D 14 CLAY: pale-brown, with fine grained sand, MPS 1 LL 50 P75 90 ķ 15 CI VSt 14 16 CLAY: dark-grey to grey, with fine grained MPS 1 LL 50 P75 90 Bentonite Seal 13 CI 12 18.00m TERMINATED AT 18.00 m Target depth
Open ended PVC aproximatly 100mm in diameter was installed and sealed with bentonite and backfilled with hand compacted earth. PVC joins where cemented and secured 11 with screws during installation.
Stickup of aproximatly 500mm was cut and capped with an end cap. 19 METHOD PENETRATION FIELD TESTS SAMPLES SOIL CONSISTENCY SPT Standard Penetration Test VS Excavator bucket Bulk disturbed sample Very Soft Very Easy (No Resistance) Ripper Hand auger ΗP Hand/Pocket Penetrometer Disturbed sample Environmental sample S Soft Firm Easy Firm DCP -Dynamic Cone Penetrometer Push tube Sonic drilling Air hammer Stiff Very Stiff Hard Thin wall tube 'undisturbed' Hard Very Hard (Refusal) PSP Perth Sand Penetrometer MOISTURE MC Moisture Content WATER Plate Bearing Test Percussion sampler Percussion sampler Short spiral auger Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling Dry Moist RELATIVE DENSITY Water Level on Date IMP Borehole Impression Test AD/V AD/T HFA WB Very Loose Loose Medium Dense Dense VL Wet Plastic limit shown Photoionisation Detector PID water inflow Vane Shear; P=Peak, Liquid limit Moisture content ■ water outflow R=Resdual (uncorrected kPa) Rock roller VD Very Dense Refer to explanatory notes for details of abbreviations and basis of descriptions CARDNO (QLD) PTY LTD

STX1902C

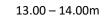
4.00 – 5.00m 5.00 – 6.00m

STX1902C

8.00 - 9.00m

9.00 – 10.00m

10.00 – 11.00m 11.00 - 12.00m


STX1902C

14.00 – 15.00m

16.00 – 18.00m

15.00 – 16.00m

<<DrawingFile>>

M30863 STX1903G.GPJ

CARDNO CORED BOREHOLE

Log

CARDNO 2.01.6 LIB.GLB I

Client: Hole No: STX1903G **Central Queensland Coal** Project: CQ Coal Styx Basin Geotechnical Investigation Location: Styx Basin Job No: M30863 Sheet: 2 of 16 Position: E773392.670 N7486730.310 55 MGA94 Angle from Horizontal: 90° Surface Elevation: 32.722 m AHD Rig Type: UDR650 Mounting: Truck **Driller: Waratah Coal** Contractor: Waratah Coal Casing Diameter: 0.1016/101.6 Bit Type: **Bit Condition:** Date Started: 28/8/19 Date Completed: 2/9/19 Logged By: AD Checked By: Material Description **Defect Description** Coring (m AHD) SOIL TYPE, plasticity or particle (E **Estimated** Average Weathering Strength Is₍₅₀₎ MPa Natural RQD (%) characteristic, colour, secondary Graphic Log Method 8 Depth (Additional Data Fluid & minor components Defect DEFECT TYPE, orientation, TCR (씸 ROCK NAME, grain size and type, Axial O - Diametr Spacing shape, roughness, infilling (mm) 8 8 8 8 0.3 colour, fabric and texture. or coating, thickness, other T Z I Z H inclusions & minor components Sandy CLAY: grey mottled dark-brown, orange, black, white, fine to medium grained sand, gypsum mottles, MPS 2 LL 40 P75 60 (continued) 100 0 11 11.50m - 11.50: gypsum mottles Sandy CLAY: grey mottled dark-brown, orange, white, fine to coarse grained sand, with fine grained, rounded gravel, gypsum mottles, MPS 3 LL 40 P75 55 21 12 Clayey GRAVEL: medium to coarse, rounded to sub-rounded, orange-brown, with fine to 12.53: avpsum mottles 20 coarse grained sand, MPS 60 LL 40 P75 15 0 100 13 Sandy CLAY: grey mottled dark-brown, orange, white, fine to coarse grained sand, with fine grained, rounded gravel, gypsum mottles, MPS 3 LL 40 P75 55 19 14 14.45: gravel in bands Sandy CLAY: grey mottled dark-brown, orange, white, fine to coarse grained sand, with fine to median grained, sub-rounded gravel, gravel in 18 100 0 5 15 MPS 20 LL 40 P75 55 15.70m 17 CLAY: grey mottled brown, LL 45 P75 100 16 16.71m CLAY: black, LL 70 P75 100 16 16.71: clayey bands Sandy SILT: orange-brown, fine to coarse grained sand, trace fine grained, sub-rounded gravel, clayey bands, MPS 3 LL 35 P75 35 65 0 15 18 18.00 - 19.27 m; core loss 19 HW 1 I I I19.70m 100 100 13 DRILLING WATER ROCK STRENGTH DEFECT TYPE PLANARITY COATING Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling Rock roller Rotary core (85mm) Rotary core (61.94mm) Diatube concrete coring Push tube Water Level Extremly High Clean Joint Curved Very High High Medium DIS AD/T HFA Sheared zone Discontinuous SN Stained Bedding Parting Seam Irregular Planar VNR CT Veneer (thin or patchy) Coating (up to 1mm) water inflow Low Very Low ■ water outflow Foliation Stepped INFILL MATERIALS ν̈́L Vein Cleavage Crushed Seam ٧N UN Undulose ROCK QUALITY DESCRIPTIONS **ROCK WEATHERING** CL CS Carbonaceus X MU ROUGHNESS Unidentified minteral Fresh Fresh
Slightly Weathered
Distinctly Weathered
Moderately Weathered
Highly Weathered
Extremly Weathered MS Secondary mineral Chlorite VR RF Very Rough Rough Fracture Zone Drift Lift Handing Break Drilling Break RQD Rock Quality Push tube Percussion sampling Designation (%) Smooth Slockensided Calcite SON AH Sonic drilling TCR **Total Core** Iron Oxide POL Polished Quartz Recovery (%) Refer to explanatory notes for details of abbreviations and basis of descriptions CARDNO (QLD) PTY LTD

Monitoring Tools

<<DrawingFile>> 18/10/2019 10:37 10.0.000 Datgel AGS RTA, Photo,

M30863 STX1903G.GPJ

CARDNO CORED BOREHOLE

CARDNO 2.01.6 LIB.GLB Log

Client: Hole No: STX1903G **Central Queensland Coal** Project: CQ Coal Styx Basin Geotechnical Investigation Location: Styx Basin Job No: M30863 Sheet: 3 of 16 Position: E773392.670 N7486730.310 55 MGA94 Angle from Horizontal: 90° Surface Elevation: 32.722 m AHD Rig Type: UDR650 Mounting: Truck **Driller: Waratah Coal** Contractor: Waratah Coal Casing Diameter: 0.1016/101.6 Bit Type: **Bit Condition:** Date Started: 28/8/19 Date Completed: 2/9/19 Logged By: AD Checked By: Material Description **Defect Description** Coring RL (m AHD) SOIL TYPE, plasticity or particle (E **Estimated** Average Weathering Strength Is₍₅₀₎ MPa characteristic, colour, secondary Natural RQD (%) Graphic Log Depth (Method 8 Additional Data Fluid & minor components Defect Visual DEFECT TYPE, orientation, TCR (ROCK NAME, grain size and type, colour, fabric and texture, Axial O - Diametr Spacing shape, roughness, infilling (mm) 8 8 8 8 1.0 or coating, thickness, other T Z I Z H inclusions & minor components SANDSTONE, fine to medium grained, orange-brown mottled grey, black, massive, carbonaceous wisps bedding 5-30 degrees HW 20.29 m: DB (continued) 21.04 m: DB 21.04 - 21.14 m: silicate cemented layer 21.16 m: DB 21.38 - 21.41 m: ignimbrite 21.53 - 21.58 m: ignimbrite 21 100 100 11 - 21.87 - 21.97 m: ignimbrite - 21.99 - 22.03 m: carbonaceous seam 22 22.28 - 22.30 m: carbonaceous seam 10 MW 23 23.09 m: carbonaceous lens, 15° Ϋ́ 23.22 - 23.27 m: rubbly core, 10° 23.30 m: carbonaceous lens, 15° 23.42 m: carbonaceous lens, 10° 23.64 m: carbonaceous lens, 15° 9 23.91 - 23.97 m; carbonate cemented 24 layer - 24.09 m: carbonaceous lens, 15° _ 24.17 - 24.28 m: carbonate cemented 100 100 24.75m 24.68 m: DB 8 BRECCIA, brown mottled orange HW to MW 25 25.27 m: SZ, 45°, UN, SL MUDSTONE, fine grained, dark-grey, massive, SW - 25.48 m: carbonaceous inclusion 26 - 26 25 m· SZ 50° UN SI - 26.43 m: DB - 26.65 m: DB - 26.73 - 26.76 m: weathered seam - 26.84 m: DB 6 100 100 27 27.10m -27.10 m: carbonaceous whisp SANDSTONE, fine grained, grey-dark-grey, minor sub-horizontal beds F 27.52m SANDSTONE, medium grained, grey, bedded, with sandstone beds - 27.87 - 27.89 m: tuff 28 E E 100 100 28.64 - 28.66 m: mudstone 4 29 29.35m SILTSTONE, dark-grey, minor sub-horizontal 11 3 DRILLING WATER ROCK STRENGTH DEFECT TYPE PLANARITY COATING Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling Rock roller Rotary core (85mm) Rotary core (61.94mm) Diatube concrete coring Push tube Water Level Extremly High Very High High Medium Clean Joint Curved DIS AD/T HFA on date shown VH Sheared zone Discontinuous SN Stained Bedding Parting Seam Irregular Planar VNR CT Veneer (thin or patchy) Coating (up to 1mm) water inflow Low Very Low ■ water outflow Foliation Stepped INFILL MATERIALS ν̈́L Vein Cleavage Crushed Seam ٧N UN Undulose ROCK QUALITY DESCRIPTIONS CL CS FZ **ROCK WEATHERING** Carbonaceus X MU ROUGHNESS Unidentified minteral Fresh Fresh Slightly Weathered Distinctly Weathered Moderately Weathered Highly Weathered Extremly Weathered MS Secondary mineral Chlorite VR RF Very Rough Rough Fracture Zone Drift Lift Handing Break Drilling Break RQD Rock Quality Push tube DW Percussion sampling Designation (%) Smooth Slockensided CA Fe Qz Calcite SON AH Sonic drilling TCR **Total Core** Iron Oxide POL Polished Quartz Recovery (%) Refer to explanatory notes for details of abbreviations and basis of descriptions CARDNO (QLD) PTY LTD

<<DrawingFile>>

M30863 STX1903G.GPJ

CARDNO CORED BOREHOLE

Log

Client: Hole No: STX1903G **Central Queensland Coal** Project: CQ Coal Styx Basin Geotechnical Investigation Location: Styx Basin Job No: M30863 Sheet: 4 of 16 Position: E773392.670 N7486730.310 55 MGA94 Angle from Horizontal: 90° Surface Elevation: 32.722 m AHD Rig Type: UDR650 Mounting: Truck **Driller: Waratah Coal** Casing Diameter: 0.1016/101.6 Bit Type: **Bit Condition:** Contractor: Waratah Coal Logged By: AD Date Started: 28/8/19 Date Completed: 2/9/19 Checked By: Material Description **Defect Description** Coring (m AHD) SOIL TYPE, plasticity or particle (E **Estimated** Average Weathering Strength Is₍₅₀₎ MPa Natural characteristic, colour, secondary Graphic Log RQD (%) Method 8 Depth (Additional Data Fluid & minor components Defect DEFECT TYPE, orientation, TCR 씸 ROCK NAME, grain size and type, Axial O - Diametr Spacing shape, roughness, infilling (mm) 8 8 8 8 1.03 colour, fabric and texture. or coating, thickness, other _ Z I Z H inclusions & minor components 30 00 - 30 07 m: tuff SILTSTONE, dark-grey, minor sub-horizontal laminations (continued) 100 100 30.37m SILTSTONE, grey, irregular sandstone beds 31 - 31.21 m: DB SILTSTONE, dark-grey, sandstone laminations at 15 degrees, soft sediment deformation, bioturbation -31.64 m: DB 100 100 31.92 - 31.98 m: multiple db 32 SANDSTONE, fine grained, grey, bedded, with siltstone laminations at 5 degrees n 32.88 m: DB 33.02m 33 HORNFELS, brown, massive SANDSTONE, fine grained, grey, massive SILTSTONE, dark-grey, sandstone laminations at 5 degrees, soft sediment deformation, bioturbation - 33.46 m: bioturbation -1 33.90m SANDSTONE, medium grained, grey, siltstone 34 34.12m 34.27m wisps at 10 degrees \triangle \triangle \triangle HORNFELS, brown, siltstone and sandstone SANDSTONE, fine to medium grained, grey-dark-grey, massive, with siltstone laminations at 5-10 degrees -2 100 100 БÃ 35 35.26m 35.32 m; JT, 60°, UN, RF SANDSTONE, fine to medium grained, grey 35.56m SILTSTONE, dark-grey, laminated, with sandstone laminations at 5 degrees -3 36 36.00 m: DB 36.17 m: DB 36.20 m: VN, IR SANDSTONE, fine to medium grained, grey, dark-grey, with abundant siltstone, bioturbation, soft sediment deformation throughout 37.55 m: BP, 10° 37.65 m: DB 37.62 - 37.76 m: tuffaceous 37.76 m: DB 100 100 38 38.56 m: DB -6 38.98 m: VN, calcite 38.98 - 39.09 m: carbonaceous laminations, 10° 39 SANDSTONE, fine to medium grained, grey, 11 39.62 m 100 100 -7 39.91 m: BP, 10° WATER DRILLING ROCK STRENGTH DEFECT TYPE PLANARITY COATING Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling Rock roller Rotary core (85mm) Rotary core (61.94mm) Diatube concrete coring Push tube Water Level Extremly High Curved Clean Joint Very High High Medium AD/T HFA Sheared zone DIS Discontinuous SN Stained Irregular Planar VNR CT Veneer (thin or patchy) Coating (up to 1mm) Bedding Parting water inflow Low Very Low ■ water outflow Foliation Stepped INFILL MATERIALS ν̈́L Vein Cleavage Crushed Seam ٧N UN Undulose **ROCK QUALITY ROCK WEATHERING** CL CS Carbonaceus X MU ROUGHNESS DESCRIPTIONS Unidentified minteral Fresh Fresh Slightly Weathered Distinctly Weathered Moderately Weathered Highly Weathered Extremly Weathered MS Secondary mineral Chlorite VR RF Very Rough Rough Fracture Zone Drift Lift Handing Break Drilling Break RQD Rock Quality Push tube DW Percussion sampling Designation (%) Smooth Slockensided Calcite SON Sonic drilling TCR **Total Core** Iron Oxide POL Polished Quartz Recovery (%) Refer to explanatory notes for details of abbreviations and basis of descriptions CARDNO (QLD) PTY LTD

<<DrawingFile>> 18/10/2019 10:37 10.0.000 Datgel AGS RTA, Photo,

M30863 STX1903G.GPJ

CARDNO CORED BOREHOLE

CARDNO 2.01.6 LIB.GLB Log

Client: Hole No: STX1903G **Central Queensland Coal** Project: CQ Coal Styx Basin Geotechnical Investigation Location: Styx Basin Job No: M30863 Sheet: 5 of 16 Position: E773392.670 N7486730.310 55 MGA94 Angle from Horizontal: 90° Surface Elevation: 32.722 m AHD Rig Type: UDR650 Mounting: Truck **Driller: Waratah Coal** Contractor: Waratah Coal Casing Diameter: 0.1016/101.6 Bit Type: **Bit Condition:** Date Started: 28/8/19 Date Completed: 2/9/19 Logged By: AD Checked By: Material Description **Defect Description** Coring RL (m AHD) SOIL TYPE, plasticity or particle Average Natural (E **Estimated** Weathering Strength Is₍₅₀₎ MPa characteristic, colour, secondary RQD (%) Graphic Log Depth (Method 8 Additional Data Fluid & minor components Defect DEFECT TYPE, orientation, TCR (ROCK NAME, grain size and type, colour, fabric and texture, Axial O - Diametr Spacing shape, roughness, infilling (mm) 8 8 8 8 0.3 or coating, thickness, other _ ≅ ± £ ⊞ inclusions & minor components SANDSTONE, fine to medium grained, grey, massive (continued) 40.68 m: DB 100 100 -41.66 m: DB -9 42 42.55 - 42.84 m: carbonaceous -10 laminations, 10 43 HORNFELS, brown, minor carbonate veining 43.20 m: DB 43.27 m: carbonaceous seam, 30° 43.27m SANDSTONE, medium to coarse grained, √ 43.34 - 43.35 m: carbonaceous seam. 43.58m grey, irregular coal beds SANDSTONE, medium to coarse grained, grey, tuffaceous sandstone clasts -11 100 100 -43.97 m: DB 44 SANDSTONE, fine to medium grained, grey, minor bedding at 5 degrees, minor crossbedding -12 БÃ 45 -13 46 46.57 m: DB 46.68 m: DB 46.72m INTERLAMINATED TUFF, SANDSTONE, SILTSTONE, brown, dark-grey, irregular -14 100 100 bedding 46.98 m: DB SANDSTONE, fine grained, grey, carbonaceous siltstone wisps and lenses, increasing with depth 47.66m SANDSTONE, fine grained, grey, minor carbonaceous wisps and gravel inclusions -15 48 48.01 m: DB 48.14 m: DB SANDSTONE, fine grained, dark-grey, laminated, sub-horizontal to 15 degrees siltstone laminations, tuff beds, soft sediment -48.34 m: no water deformation -16 48.97m 49 CARBONACEOUS SILTSTONE, dark-grey, laminated, sandstone laminations fining upward, tuff laminations J. V. 49.13 - 49.17 m: irregular carbonate 100 100 veining \downarrow \downarrow 1 11 \downarrow -17 49.87 m: DB DRILLING WATER ROCK STRENGTH DEFECT TYPE PLANARITY COATING Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling Rock roller Rotary core (85mm) Rotary core (61.94mm) Diatube concrete coring Push tube Water Level Extremly High Curved Discontinuous Clean Joint Very High High Medium DIS AD/T HFA Sheared zone SN Stained Bedding Parting Seam Irregular Planar VNR CT Veneer (thin or patchy) Coating (up to 1mm) water inflow Low Very Low ■ water outflow Foliation Stepped INFILL MATERIALS ν̈́L Vein Cleavage Crushed Seam ٧N UN Undulose ROCK QUALITY DESCRIPTIONS **ROCK WEATHERING** CL CS Carbonaceus X MU ROUGHNESS Unidentified minteral Fresh Fresh Slightly Weathered Distinctly Weathered Moderately Weathered Highly Weathered Extremly Weathered MS Secondary mineral Chlorite VR RF Very Rough Rough Fracture Zone Drift Lift Handing Break Drilling Break RQD Rock Quality Push tube Percussion sampling Designation (%) Smooth Slockensided Calcite SON AH Sonic drilling TCR **Total Core** Iron Oxide POL Polished Quartz Recovery (%) Refer to explanatory notes for details of abbreviations and basis of descriptions CARDNO (QLD) PTY LTD

<<DrawngFile>>

M30863 STX1903G.GPJ

CARDNO CORED BOREHOLE

Log

CARDNO 2.01.6 LIB.GLB I

Client: Hole No: STX1903G **Central Queensland Coal** Project: CQ Coal Styx Basin Geotechnical Investigation Location: Styx Basin Job No: M30863 Sheet: 6 of 16 Position: E773392.670 N7486730.310 55 MGA94 Angle from Horizontal: 90° Surface Elevation: 32.722 m AHD Rig Type: UDR650 Mounting: Truck **Driller: Waratah Coal** Contractor: Waratah Coal Casing Diameter: 0.1016/101.6 Bit Type: **Bit Condition:** Logged By: AD Date Started: 28/8/19 Date Completed: 2/9/19 Checked By: Material Description **Defect Description** Coring (m AHD) SOIL TYPE, plasticity or particle Average Natural (E **Estimated** Weathering Strength Is₍₅₀₎ MPa characteristic, colour, secondary RQD (%) Graphic Log Method 8 Depth (Additional Data Fluid & minor components Defect DEFECT TYPE, orientation, TCR ROCK NAME, grain size and type, colour, fabric and texture, 씸 Axial O - Diametr Spacing shape, roughness, infilling (mm) 8 8 8 8 1.0 or coating, thickness, other _ ≅ ± £ ⊞ inclusions & minor components CARBONACEOUS SILTSTONE, dark-grey, laminated, sandstone laminations fining upward, tuff laminations (continued) J V 50.17 m: BP, 15° \downarrow 50.25 m: DB 50.37 m: DB \downarrow J. 100 100 50.67 m: DB \downarrow \downarrow 50.93 m: DB 51 \downarrow V \checkmark 51.46m -51.46 m: DB COAL, black, irregular carbonate veining trending 80 degrees - 51.86 m: DB 52 -20 100 100 53 53.18 m: DB 53.25 - 53.27 m: rubbly core 53.33 - 53.53 m: multiple spider MUDSTONE, dark-grey, laminated, bedding at 10 degrees webbing fractures, 30 SANDSTONE, fine grained, grey, massive, -21 carbonaceous wisps 54 54.20 m: DB SANDSTONE, fine to medium grained, grey, 54.53 m: DB 54.60 m: DB -22 БĞ 55 55.31 - 55.32 m: carbonaceous wisps, 5° -23 55.77 - 55.83 m: gravelly band 55.91 m: siltstone lamination, 25° 100 100 56 -24 − 57.04 m: tuff lamination 57.09 - 57.10 m: carbonaceous wisps, 15° 57 -25 57.95 m: DB 58.00 m: DB 58 INTERBEDDED CARBONACEOUS SILTSTONE AND COAL, dark-grey, black, - 58 21 m· DB 58.35 m: SZ, 60°, UN, SL 100 100 -26 58.70 m: DE 58 83 m: DB - 58.94 m: DB 59 59.19 m: DB - 59.39 m: SZ, 60°, UN, SL - 59.49 m: DB 11 59.69 m: SZ, 50°, UN, SL -27 59.86 m: SZ, 50°, UN, SL DRILLING WATER ROCK STRENGTH DEFECT TYPE PLANARITY COATING Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling Rock roller Rotary core (85mm) Rotary core (61.94mm) Diatube concrete coring Push tube Water Level Extremly High Clean Joint Curved Very High High Medium DIS AD/T HFA Sheared zone Discontinuous SN Stained Bedding Parting Seam Irregular Planar VNR CT Veneer (thin or patchy) Coating (up to 1mm) water inflow Low Very Low ■ water outflow Foliation Stepped INFILL MATERIALS ν̈́L Vein Cleavage Crushed Seam ٧N UN Undulose ROCK QUALITY DESCRIPTIONS CL CS **ROCK WEATHERING** Carbonaceus X MU ROUGHNESS Unidentified minteral Fresh Fresh Slightly Weathered Distinctly Weathered Moderately Weathered Highly Weathered Extremly Weathered MS Secondary mineral Chlorite VR RF Very Rough Rough Fracture Zone Drift Lift Handing Break Drilling Break RQD Rock Quality Push tube DW Percussion sampling Designation (%) Smooth Slockensided Calcite SON Sonic drilling TCR **Total Core** Iron Oxide POL Polished Quartz Recovery (%) Refer to explanatory notes for details of abbreviations and basis of descriptions CARDNO (QLD) PTY LTD

<<DrawingFile>>

M30863 STX1903G.GPJ

CARDNO CORED BOREHOLE

Log

CARDNO 2.01.6 LIB.GLB I

Client: Hole No: STX1903G **Central Queensland Coal** Project: CQ Coal Styx Basin Geotechnical Investigation Location: Styx Basin Job No: M30863 Sheet: 7 of 16 Position: E773392.670 N7486730.310 55 MGA94 Angle from Horizontal: 90° Surface Elevation: 32.722 m AHD Rig Type: UDR650 Mounting: Truck **Driller: Waratah Coal** Contractor: Waratah Coal Casing Diameter: 0.1016/101.6 Bit Type: **Bit Condition:** Logged By: AD Date Started: 28/8/19 Date Completed: 2/9/19 Checked By: Material Description **Defect Description** Coring (m AHD) SOIL TYPE, plasticity or particle (E **Estimated** Average Weathering Strength Is₍₅₀₎ MPa Natural RQD (%) characteristic, colour, secondary Graphic Log Method 8 Depth (Additional Data Fluid & minor components Defect DEFECT TYPE, orientation, TCR ROCK NAME, grain size and type, colour, fabric and texture, 씸 Axial O - Diametr Spacing shape, roughness, infilling (mm) 8 8 8 8 1.3 or coating, thickness, other T Z I Z H inclusions & minor components HORNFELS, dark-brown, soft sediment deformation, minor carbonate (continued) 60.08 - 60.15 m: DB 100 100 60.25r SILTSTONE, dark-grey, sub-horizontal 60.42 m: SZ, 60°, UN, SL laminations 1 1 SILTSTONE, dark-grey, massive, carbonaceous inclusions, soft sediment -28 - 60.84 m: SZ, 65°, UN, SL - 60.92 m: DB deformation 61 61.36 m; VN, 45°, UN, calcite -29 SILTSTONE, dark-grey, laminated, horizontal sandstone laminations 100 100 -61.94 m: SZ, 60°, healed 62 62.17m 62.31m INTERBEDDED SANDSTONE AND HORNFELS, dark-brown, bedded SILTSTONE, dark-grey, laminated, sub-horizontal sandstone laminations and minor beds 62.55 m: DB -30 62.70 - 62.74 m: tuff ~ 62.77 m: DB 63 SANDSTONE, grey, dark-grey, laminated, abundant siltstone laminations bedding at 5-10 63.10 - 63.50 m: tuff 63.44 m: DB -31 64 64.56 m: DB -32 100 100 БĞ 65 -33 66 -34 67 ─ 67.20 m: DB 〜 67.27 m: VN, 25°, UN, healed calcite 〜 67.38 - 67.45 m: tuffaceous COAL, black, irregular calcite veining at 90 \degrees - 67.68 m: DB - 67.75 m: VN, 60°, UN, healed calcite -35 100 100 INTERBEDDED CARBONACEOUS SILTSTONE AND SANDSTONE, fine grained, black, dark-grey, grey, laminated, bioturbation, soft sediment deformation, sub-horizontal 67.97 m: DB 68 laminations -36 69 COAL, black, irregular calcite veining at 90 HORNFELS, dark-brown 11 100 100 69.77m COAL, black, minor calcite veining -37 1.1 69.75 m: DB CARBONACEOUS SILTSTONE, black DRILLING WATER ROCK STRENGTH DEFECT TYPE PLANARITY COATING Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling Rock roller Rotary core (85mm) Rotary core (61.94mm) Diatube concrete coring Push tube Water Level Extremly High Clean Joint Curved Very High High Medium AD/T HFA VH Sheared zone DIS Discontinuous SN Stained Bedding Parting Seam Irregular Planar VNR CT Veneer (thin or patchy) Coating (up to 1mm) water inflow Low Very Low ■ water outflow Foliation Stepped INFILL MATERIALS ν̈́L Vein Cleavage Crushed Seam ٧N UN Undulose **ROCK QUALITY ROCK WEATHERING** CL CS Carbonaceus X MU ROUGHNESS DESCRIPTIONS Unidentified minteral Fresh Fresh Slightly Weathered Distinctly Weathered Moderately Weathered Highly Weathered Extremly Weathered MS Secondary mineral Chlorite VR RF Very Rough Rough Fracture Zone Drift Lift Handing Break Drilling Break RQD Rock Quality Push tube DW Percussion sampling Designation (%) Smooth Slockensided Calcite SON Sonic drilling TCR **Total Core** Iron Oxide POL Polished Quartz Recovery (%) Refer to explanatory notes for details of abbreviations and basis of descriptions CARDNO (QLD) PTY LTD

Monitoring Tools

<<DrawingFile>> 18/10/2019 10:37 10.0.000 Datgel AGS RTA, Photo,

M30863 STX1903G.GPJ

CARDNO 2.01.6 LIB.GLB Log CARDNO CORED BOREHOLE

Client: Hole No: STX1903G **Central Queensland Coal** Project: CQ Coal Styx Basin Geotechnical Investigation Location: Styx Basin Job No: M30863 Sheet: 8 of 16 Position: E773392.670 N7486730.310 55 MGA94 Angle from Horizontal: 90° Surface Elevation: 32.722 m AHD Rig Type: UDR650 Mounting: Truck **Driller: Waratah Coal** Contractor: Waratah Coal Casing Diameter: 0.1016/101.6 Bit Type: **Bit Condition:** Logged By: AD Date Started: 28/8/19 Date Completed: 2/9/19 Checked By: Material Description **Defect Description** Coring RL (m AHD) SOIL TYPE, plasticity or particle Average Natural **Estimated** Depth (m) Weathering Strength Is₍₅₀₎ MPa characteristic, colour, secondary RQD (%) Graphic Log Method 8 Additional Data Fluid & minor components Defect DEFECT TYPE, orientation, TCR (ROCK NAME, grain size and type, colour, fabric and texture, Axial O - Diametr Spacing shape, roughness, infilling (mm) 8 8 8 8 1.0 or coating, thickness, other _ ≅ ± £ ⊞ inclusions & minor components SANDSTONE, fine grained, grey, laminated, siltstone laminations at 5 degrees 70.95m COAL, black, minor calcite veining 100 100 — 71.24 m: DB — 71.35 - 71.38 m: tuff — 71.47 m: DB CARBONACEOUS SILTSTONE, black, massive, carbonaceous wies- $\overline{\downarrow}$ -39 \forall \downarrow 72 -72.00 m: DB \downarrow \checkmark 72.40 m: VN, 60°, calcite \downarrow -40 1 72.81 m: DB CARBONACEOUS SILTSTONE, dark-grey, dark-brown, black, laminated, sandstone and hornfels laminations, soft sediment deformation, becoming more heat affected 73 \downarrow \downarrow \downarrow V 1 -41 100 100 \downarrow 74 - 74.18 m: DB \downarrow \downarrow -42 \downarrow - 74.75 m: DB \downarrow БĞ 75 \downarrow - 75.35 m· SZ 60° UN healed calcite \downarrow 75.50 m: SZ, 55°, PR, healed calcite \downarrow -43 J. – 75.93 m: DB 76 \downarrow J \downarrow -76.52 m; SZ, 60°, UN, calcite 76.67m -44 SANDSTONE, medium grained, grey, massive, with siltstone laminations and wisps 100 100 77.01 m: BP, 10°, UN COAL, black, massive, minor calcite veining at \downarrow \downarrow CARBONACEOUS SILTSTONE, black, \downarrow 78.28m SILTSTONE, dark-grey, laminated, sub-horizontal sandstone laminations -46 79 79.08 - 79.16 m: irregular calcite 100 100 79.42 m: DB 11 -47 DRILLING WATER ROCK STRENGTH DEFECT TYPE PLANARITY COATING Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling Rock roller Rotary core (85mm) Rotary core (61.94mm) Diatube concrete coring Push tube Water Level Extremly High Clean Joint Curved AD/T HFA Very High High Medium DIS Discontinuous Sheared zone SN Stained Bedding Parting Seam Irregular Planar VNR CT Veneer (thin or patchy) Coating (up to 1mm) water inflow Low Very Low ■ water outflow Foliation Stepped INFILL MATERIALS ν̈́L Vein Cleavage Crushed Seam ٧N UN Undulose ROCK QUALITY DESCRIPTIONS CL CS FZ **ROCK WEATHERING** Carbonaceus X MU ROUGHNESS Unidentified minteral Fresh Fresh Slightly Weathered Distinctly Weathered Moderately Weathered Highly Weathered Extremly Weathered MS Secondary mineral Chlorite VR RF Very Rough Rough Fracture Zone Drift Lift Handing Break Drilling Break RQD Rock Quality Push tube Percussion sampling Designation (%) Smooth Slockensided Calcite SON AH Sonic drilling TCR **Total Core** Iron Oxide POL Polished Quartz Recovery (%) Refer to explanatory notes for details of abbreviations and basis of descriptions CARDNO (QLD) PTY LTD

<<DrawngFile>>

M30863 STX1903G.GPJ

CARDNO CORED BOREHOLE

Log

Client: Hole No: STX1903G **Central Queensland Coal** Project: CQ Coal Styx Basin Geotechnical Investigation Location: Styx Basin Job No: M30863 Sheet: 9 of 16 Position: E773392.670 N7486730.310 55 MGA94 Angle from Horizontal: 90° Surface Elevation: 32.722 m AHD Rig Type: UDR650 Mounting: Truck **Driller: Waratah Coal** Contractor: Waratah Coal Casing Diameter: 0.1016/101.6 Bit Type: **Bit Condition:** Date Started: 28/8/19 Date Completed: 2/9/19 Logged By: AD Checked By: Material Description **Defect Description** Coring (m AHD) SOIL TYPE, plasticity or particle (E **Estimated** Average Weathering Strength Is₍₅₀₎ MPa Natural RQD (%) characteristic, colour, secondary Graphic Log Method 8 Depth (Additional Data Fluid Defect & minor components DEFECT TYPE, orientation, TCR 씸 ROCK NAME, grain size and type, Axial O - Diametr Spacing shape, roughness, infilling (mm) 8 8 8 8 1.03 colour fabric and texture or coating, thickness, other _ ≅ ± £ ⊞ inclusions & minor components 80.21m 80.22 - 80.30 m: irregular calcite veining, 90° INTERBEDDED COAL AND CARBONACEOUS SILTSTONE, black, \downarrow 80.37 - 80.77 m; JT, 90°, IR, healed 100 100 \downarrow 81 1 \downarrow 81.50m - 81.50 m: DB - 81.59 m: DB \downarrow CARBONACEOUS SILTSTONE, black dark-brown, dark-grey, laminated, with sub-horizontal sandstone laminations and thermally altered beds -49 \downarrow - 81.76 m: DB 81.90 m: DB 82 \downarrow \downarrow \downarrow 1 \downarrow -50 82 72 m· DR 100 100 J 83 \downarrow - 83.05 m: VN. 80°. ST. calcite 1 83 39 m· DR SILTSTONE, dark-grey, dark-brown, laminated, with sub-horizontal sandstone laminations and thermally altered beds -51 84 84.01 m: DB SANDSTONE, fine grained, grey, dark-grey, laminated, with sub-horizontal siltstone laminations -52 84.82m SILTSTONE, dark-grey, laminated, with sub-horizontal sandstone laminations БĞ 85.01 m: SZ, 45°, CU, healed 85.10 m: SZ, 45°, CU, healed 85 SANDSTONE, fine grained, grey, laminated, with sub-horizontal siltstone laminations 85.46 m: DB -53 100 100 - 85.97 m: DB - 86.08 m: VN, 15°, IR, 3 mm, calcite 86 -54 86 70 m· DB ↓ 87.00m CARBONACEOUS SILTSTONE, black, 86.96 - 86.97 m: coal lamination 87.07 m: SZ, 50°, UN, POL massive, with minor coal wisps SILTSTONE, dark-grey, massive -87.32 m: SZ, 70°, CU, POL SILTSTONE, dark-grey, laminated, with sandstone laminations and soft sediment -55 deformation - 87.75 m; coal lens. 30° 88 88.31 m: SZ, 50°, UN, healed 100 100 -56 SANDSTONE, fine grained, grey, laminated, with sub-horizontal siltstone laminations and 89 soft sediment deformation 11 -57 WATER DRILLING ROCK STRENGTH DEFECT TYPE PLANARITY COATING Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling Rock roller Rotary core (85mm) Rotary core (61.94mm) Diatube concrete coring Push tube Water Level Extremly High Clean Joint Curved Very High High Medium DIS AD/T HFA VH Sheared zone Discontinuous SN Stained Bedding Parting Seam Irregular Planar VNR CT Veneer (thin or patchy) Coating (up to 1mm) water inflow Low Very Low ■ water outflow Foliation Stepped INFILL MATERIALS ν̈́L Vein Cleavage Crushed Seam ٧N UN Undulose ROCK QUALITY DESCRIPTIONS **ROCK WEATHERING** Carbonaceus CL CS X MU ROUGHNESS Unidentified minteral Fresh Fresh Slightly Weathered Distinctly Weathered Moderately Weathered Highly Weathered Extremly Weathered MS Secondary mineral Chlorite VR RF Very Rough Rough Fracture Zone Drift Lift Handing Break Drilling Break RQD Rock Quality Push tube DW Percussion sampling Designation (%) Smooth Slockensided CA Fe Calcite SON Sonic drilling TCR **Total Core** Iron Oxide POL Polished Quartz Recovery (%) Refer to explanatory notes for details of abbreviations and basis of descriptions CARDNO (QLD) PTY LTD

<<DrawingFile>> 18/10/2019 10:37 10.0.000 Datgel AGS RTA, Photo,

M30863 STX1903G.GPJ

CARDNO CORED BOREHOLE

Log

CARDNO 2.01.6 LIB.GLB I

Client: Hole No: STX1903G **Central Queensland Coal** Project: CQ Coal Styx Basin Geotechnical Investigation Location: Styx Basin Job No: M30863 Sheet: 10 of 16 Position: E773392.670 N7486730.310 55 MGA94 Angle from Horizontal: 90° Surface Elevation: 32.722 m AHD Rig Type: UDR650 Mounting: Truck **Driller: Waratah Coal** Contractor: Waratah Coal Casing Diameter: 0.1016/101.6 Bit Type: **Bit Condition:** Date Started: 28/8/19 Date Completed: 2/9/19 Logged By: AD Checked By: Material Description **Defect Description** Coring (m AHD) SOIL TYPE, plasticity or particle Average Natural (E **Estimated** Weathering Strength Is₍₅₀₎ MPa characteristic, colour, secondary RQD (%) Graphic Log Depth (Method 8 Additional Data Fluid & minor components Defect DEFECT TYPE, orientation, TCR 씸 ROCK NAME, grain size and type, Axial O - Diametr Spacing shape, roughness, infilling (mm) 8 8 8 8 1.0 colour fabric and texture or coating, thickness, other _ ≅ ± £ ⊞ inclusions & minor components 100 100 SANDSTONE, fine to medium grained, grey, laminated, with minor siltstone laminations at 5-10 degrees and tuffaceous bands 91 — 91.20 m: DB ∑ 91.20 - 91.34 m: VN, 90°, IR, 2 mm, 100 100 92 92.00 m: DB -60 93 93.64m 93.70 m: VN, 45°, IR, 3 mm, calcite 93.75 m: JT, 45°, healed INTERLAMINATED SANDSTONE AND SILTSTONE, fine grained, dark-grey, laminated, sub-horizontal laminations, minor -61 94 thermally altered bands -62 100 100 94 90 m: DB БĞ 95 95.29m CARBONACEOUS SILTSTONE, black, massive, with minor coal wisps \downarrow -63 V. 95.95m 96 SILTSTONE, dark-grey, laminated, with sandstone laminations at 5-10 degrees, soft sediment deformation, bioturbation 96.08 m; SZ, 55°, PR, healed -64 96.90 - 96.96 m: coal - 97 54 m· DB -65 100 100 98 COAL, black, massive, minor carbonate veins at 90 degrees -66 98.92m CARBONACEOUS SILTSTONE, black, massive, with minor coal wisps 99 \downarrow 99.06 m: SZ, 45°, UN, POL, calcite 99.14 m: SZ, 45°, UN, POL, calcite \downarrow 11 SILTSTONE, dark-grey, laminated, sub-horizontal sandstone laminations, 98 98 99.69 m: DB -67 bioturbation 99.82 m: DB DRILLING WATER ROCK STRENGTH DEFECT TYPE PLANARITY COATING Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling Rock roller Rotary core (85mm) Rotary core (61.94mm) Diatube concrete coring Push tube Water Level Extremly High Clean Joint Curved Very High High Medium DIS Discontinuous AD/T HFA VH Sheared zone SN Stained Bedding Parting Seam Irregular Planar VNR CT Veneer (thin or patchy) Coating (up to 1mm) water inflow Low Very Low ■ water outflow Foliation Stepped INFILL MATERIALS ν̈́L Vein Cleavage Crushed Seam ٧N UN Undulose ROCK QUALITY DESCRIPTIONS **ROCK WEATHERING** CL CS Carbonaceus X MU ROUGHNESS Unidentified minteral Fresh Fresh Slightly Weathered Distinctly Weathered Moderately Weathered Highly Weathered Extremly Weathered MS Secondary mineral Chlorite VR RF Very Rough Rough Fracture Zone Drift Lift Handing Break Drilling Break RQD Rock Quality Push tube Percussion sampling Designation (%) Smooth Slockensided Calcite SON Sonic drilling TCR **Total Core** Iron Oxide POL Polished Quartz Recovery (%) Refer to explanatory notes for details of abbreviations and basis of descriptions CARDNO (QLD) PTY LTD

<<DrawingFile>>

M30863 STX1903G.GPJ

CARDNO CORED BOREHOLE

CARDNO 2.01.6 LIB.GLB Log

Hole No: STX1903G Client: **Central Queensland Coal** Project: CQ Coal Styx Basin Geotechnical Investigation Styx Basin Location: Job No: M30863 Sheet: 11 of 16 Position: E773392.670 N7486730.310 55 MGA94 Angle from Horizontal: 90° Surface Elevation: 32.722 m AHD Rig Type: UDR650 Mounting: Truck **Driller: Waratah Coal** Casing Diameter: 0.1016/101.6 Bit Type: **Bit Condition:** Contractor: Waratah Coal Date Started: 28/8/19 Date Completed: 2/9/19 Logged By: AD Checked By: Material Description **Defect Description** Coring (m AHD) SOIL TYPE, plasticity or particle Average Natural (E **Estimated** Weathering Strength Is₍₅₀₎ MPa characteristic, colour, secondary RQD (%) Graphic Log 8 Depth (Additional Data Method Fluid & minor components Defect DEFECT TYPE, orientation, TCR ROCK NAME, grain size and type, colour, fabric and texture, 씸 Axial O - Diametr Spacing shape, roughness, infilling (mm) 8 8 8 8 1.0 or coating, thickness, other _ ≅ ± £ ⊞ inclusions & minor components 100 04 m· DB SANDSTONE, fine grained, grey, dark-grey, laminated, sub-horizontal siltstone laminations (continued) 100.41 m: DB 100.73m 100.73 - 100.80 m: coal with irregular calcite veining CARBONACEOUS SILTSTONE, dark-grey, black, bedded, with coal beds \forall 101 \checkmark 101.12m 98 98 COAL, black, bedded, with carbonaceous siltstone beds - 101.70 m: JT. 90°. UN. healed -69 102 -70 102.82m \perp 103.02mSILTSTONE, dark-grey, horizontal laminations 102.91 m: SZ, 45°, UN, POL 103 103.19mCOAL, black, irregular calcite veining 103.23 m: SZ, 30°, UN, POL 103.33 m: SZ, 70°, UN, SL CORE LOSS 0.03m (103.19-103.22) SILTSTONE, dark-grey, massive -71 100 100 103.93m SANDSTONE, fine grained, grey, laminated, 104.22msub-horizontal siltstone laminations 104 SILTSTONE, dark-grey, bedded, tuffaceous -72 104.94 m: SZ, 50°, UN, SL БÃ 105.03m 105 105.26mTUFF, dark-brown, brecciated by carbonate veining 105.27 m: SZ, 65°, UN, POL 105.35 m: SZ, 70°, UN, POL CARBONACEOUS SILTSTONE, black, massive -73 105.82m 106.02mCOAL, black - 105.95 m: DB 106 SILTSTONE, dark-grey, massive - 106.21 m: DB 106.45 m: SZ, 60°, PR, healed -74 100 100 107 - 107.28 m: DB 107.52m - 107.51 m: DB SANDSTONE, fine to medium grained, laminated, grey, minor sub-horizontal to 10 degree siltstone laminations 108 108.52 m: SZ, 65°, PR, plastic -76 108.95m 109 INTERLAMINATED SANDSTONE AND 100 100 SILTSTONE, fine grained, laminated, dark-grey, grey, soft sediment deformation 11 109.75m -77 DRILLING WATER ROCK STRENGTH DEFECT TYPE PLANARITY COATING Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling Rock roller Rotary core (85mm) Rotary core (61.94mm) Diatube concrete coring Push tube Water Level Extremly High Clean Joint Curved Very High High Medium DIS AD/T HFA VΗ Sheared zone Discontinuous SN Stained Bedding Parting Seam Irregular Planar VNR CT Veneer (thin or patchy) Coating (up to 1mm) water inflow Low Very Low ■ water outflow Foliation Stepped INFILL MATERIALS ν̈́L Vein Cleavage Crushed Seam ٧N UN Undulose ROCK QUALITY DESCRIPTIONS **ROCK WEATHERING** CL CS Carbonaceus X MU ROUGHNESS Unidentified minteral Fresh Fresh Slightly Weathered Distinctly Weathered Moderately Weathered Highly Weathered Extremly Weathered MS Secondary mineral Chlorite VR RF Very Rough Rough Fracture Zone Drift Lift Handing Break Drilling Break RQD Rock Quality Push tube Percussion sampling Designation (%) Smooth Slockensided Calcite SON Sonic drilling TCR **Total Core** Iron Oxide POL Polished Quartz Recovery (%) Refer to explanatory notes for details of abbreviations and basis of descriptions CARDNO (QLD) PTY LTD

<<DrawingFile>>

M30863 STX1903G.GPJ

CARDNO CORED BOREHOLE

CARDNO 2.01.6 LIB.GLB Log

Hole No: STX1903G Client: **Central Queensland Coal** Project: CQ Coal Styx Basin Geotechnical Investigation Styx Basin Location: Job No: M30863 Sheet: 12 of 16 Position: E773392.670 N7486730.310 55 MGA94 Angle from Horizontal: 90° Surface Elevation: 32.722 m AHD Rig Type: UDR650 Mounting: Truck **Driller: Waratah Coal** Contractor: Waratah Coal Casing Diameter: 0.1016/101.6 Bit Type: **Bit Condition:** Logged By: AD Date Started: 28/8/19 Date Completed: 2/9/19 Checked By: Material Description **Defect Description** Coring RL (m AHD) SOIL TYPE, plasticity or particle (E **Estimated** Average Weathering Strength Is₍₅₀₎ MPa Natural RQD (%) characteristic, colour, secondary Graphic Log 8 Depth (Additional Data Method Fluid & minor components Defect DEFECT TYPE, orientation, TCR ROCK NAME, grain size and type, colour, fabric and texture, Axial O - Diametr Spacing shape, roughness, infilling (mm) 8 8 8 8 1.03 or coating, thickness, other _ ≅ ± £ ⊞ inclusions & minor components SILTSTONE, laminated, dark-grey, tuffaceous beds, sub-horizontal sandstone laminations (continued) 100 100 111.64 m: DB -79 SANDSTONE, fine to medium grained. 111.92 - 111.97 m: minor coarse gravel sized clasts
112.04 - 112.06 m: coal
112.08 m: SZ, 40°, UN, S massive, grey, with carbonaceous wisps and 112.04mgravel bands 112 CARBONACEOUS SILTSTONE, laminated black, with coal wisps and laminations, soft sediment deformation \downarrow 112.62m 112.62 m: DB COAL, bedded, black, with minor calcite veining at 90 degrees -80 112.78 m: DB 112.93 - 113.00 m: carbonaceous 100 100 113 113.20 - 113.95 m: JT, 90°, UN, RF -81 113.96m 114 CARBUNACEOUS SILTSTONE, laminated black, with coal wisps and laminations, soft 114.42m sediment deformation CARBONACEOUS SILTSTONE, laminated. V 114.08 m: DB V INTERLAMINATED SANDSTONE AND IIN I EKLAMINATED SANDSTONE AND SILTSTONE, fine grained, laminated, grey, dark-grey, soft sediment deformation -82 БÃ CARBONACEOUS SILTSTONE, black, minor - 115.00 m: coal lamination 115 horizontal laminations and coal lensing - 115.24 m: DB 115.30m 115.44mSANDSTONE, fine grained, laminated, grey, ШП siltstone laminations SILTSTONE, massive, grey 115.70 - 115.85 m: irregular carbonate -83 CARBONACEOUS SILTSTONE, black, 116.07m tuffaceous bands, soft sediment deformation \downarrow 100 100 veining \downarrow 116 SILTSTONE, massive, dark-grey 116.72m -84 116.71 m: DB COAL, black, minor calcite veining at 90 116.98m degrees SILTSTONE, massive, dark-grey, minor irregular carbonaceous inclusions - 117.30 m; SZ, 45°, UN, SL -85 118.01m 118 SANDSTONE, fine grained, massive, grey, with minor siltstone laminations 118.62m 100 100 SILTSTONE, laminated, dark-grey, dark-brown, with tuffaceous beds and irregular -86 coal laminations 119 119.19m SANDSTONE, fine grained, grey, siltstone and minor gravel inclusions, soft sediment deformation 11 -87 DRILLING WATER ROCK STRENGTH DEFECT TYPE PLANARITY COATING Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling Rock roller Rotary core (85mm) Rotary core (61.94mm) Diatube concrete coring Push tube Water Level Extremly High Clean Joint Curved Very High High Medium AD/T HFA Sheared zone DIS Discontinuous SN Stained Bedding Parting Seam Irregular Planar VNR CT Veneer (thin or patchy) Coating (up to 1mm) water inflow Low Very Low ■ water outflow Foliation Stepped INFILL MATERIALS ν̈́L Vein Cleavage Crushed Seam ٧N UN Undulose ROCK QUALITY DESCRIPTIONS **ROCK WEATHERING** Carbonaceus CL CS X MU ROUGHNESS Unidentified minteral Fresh Fresh Slightly Weathered Distinctly Weathered Moderately Weathered Highly Weathered Extremly Weathered MS Secondary mineral Chlorite VR RF Very Rough Rough Fracture Zone Drift Lift Handing Break Drilling Break RQD Rock Quality Push tube Percussion sampling Designation (%) Smooth Slockensided Calcite SON Sonic drilling TCR **Total Core** Iron Oxide POL Polished Quartz Recovery (%) Refer to explanatory notes for details of abbreviations and basis of descriptions CARDNO (QLD) PTY LTD

<<DrawingFile>>

M30863 STX1903G.GPJ

CARDNO CORED BOREHOLE

Log

CARDNO 2.01.6 LIB.GLB I

Hole No: STX1903G Client: **Central Queensland Coal** Project: CQ Coal Styx Basin Geotechnical Investigation Styx Basin Location: Job No: M30863 Sheet: 13 of 16 Position: E773392.670 N7486730.310 55 MGA94 Angle from Horizontal: 90° Surface Elevation: 32.722 m AHD Rig Type: UDR650 Mounting: Truck **Driller: Waratah Coal** Casing Diameter: 0.1016/101.6 Bit Type: **Bit Condition:** Contractor: Waratah Coal Logged By: AD Date Started: 28/8/19 Date Completed: 2/9/19 Checked By: Material Description **Defect Description** Coring (m AHD) SOIL TYPE, plasticity or particle (E **Estimated** Average Weathering Strength Is₍₅₀₎ MPa Natural characteristic, colour, secondary Graphic Log RQD (%) 8 Depth (Additional Data Method Fluid & minor components Defect DEFECT TYPE, orientation, TCR ROCK NAME, grain size and type, colour, fabric and texture, 占 Axial O - Diametr Spacing shape, roughness, infilling (mm) 8 8 8 8 1.03 or coating, thickness, other _ Z I Z H inclusions & minor components MUDSTONE, massive, brown, weathered tuff COAL, massive, black (continued) 119.99 - 120.23 m: rubbly core 100 100 V CARBONACEOUS MUDSTONE, laminated, dark-grey, black, with coal wisps \downarrow 1 1 \downarrow -88 120.80 m: DB 120.95m – 120.93 m; JT. 50°. PR. S 121 SANDSTONE, fine grained, laminated, grey, with siltstone laminations at 5-10 degrees -89 100 100 122 122.60m 122.65 m; JT, 50°, PR, S Ī. CARBONACEOUS SILTSTONE, black, soft -90 - 122.84 m: DB \downarrow 123 — 123.04 m: DB — 123.15 m: VN, 55°, ST, calcite — 123.27 m: SZ, 40°, PR, POL, calcite \downarrow 123.25011 123.37m COAL, black, with calcite veining at 90 degrees SILTSTONE, massive, black, dark-grey, with tuffaceous bands -91 124.04m 124 SANDSTONE, fine to medium grained, massive, grey, with carbonaceous wisps and 124.45mirregular siltstone laminations 124.63mSILTSTONE, laminated, dark-grey, with sandstone laminations at 10 degrees, soft 124 68 m· DR -92 sediment deformation 100 100 БÃ INTERLAMINATED SANDSTONE AND 125 125.15mSILTSTONE, fine grained, laminated, grey, dark-grey, sub-horizontal bedding - 125.18 m: DB COAL, black 125.37 m: DB 125.63mCARBONACEOUS SILTSTONE, black, with coal lenses -93 INTERLAMINATED SANDSTONE AND

126.00m SILTSTONE, fine grained, grey, dark-grey, soft

126.17m sediment deformation 126 126.00 m: DB CARBONACEOUS SILTSTONE, black, with coal lenses 126.50 m: DB 126.62mCOAL, black -94 $\overline{\downarrow}$ CARBONACEOUS SILTSTONE, black, with 126.74 m: DB coal lenses \downarrow 126.96 m: SZ, 40°, CU, SL 127 \downarrow 127.24m INTERLAMINATED SANDSTONE AND SILTSTONE, fine grained, grey, dark-grey, soft sediment deformation - 127 31 m: DB 100 100 128 - 127 99 m· DB 128.10m SILTSTONE, massive, dark-grey 128.52 m: DB 128.63 - 128.73 m: multiple veins, 45°, INTERLAMINATED SANDSTONE AND SILTSTONE, fine grained, grey, dark-grey, soft sediment deformation -96 SILTSTONE, massive, dark-grey, becoming 129 carbonaceous 129.46m 129.46 m: DB 129.71m COAL, black, calcite veining at 90 degrees 11 100 100 -97 1.1 129.73 m: DB CARBONACEOUS SILTSTONE, black, with 129.91 m: DB DRILLING WATER ROCK STRENGTH DEFECT TYPE PLANARITY COATING Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling Water Level Extremly High Very High High Medium Joint Curved Clean AD/T HFA VΗ Sheared zone DIS Discontinuous SN Stained Bedding Parting Seam Irregular Planar VNR CT Veneer (thin or patchy) Coating (up to 1mm) water inflow Washbore drilling Rock roller Rotary core (85mm) Rotary core (63.5mm) Rotary core (51.94mm) Diatube concrete coring Low Very Low ■ water outflow Foliation Stepped INFILL MATERIALS ν̈́L Vein Cleavage Crushed Seam ٧N UN Undulose ROCK QUALITY DESCRIPTIONS **ROCK WEATHERING** Carbonaceus CL CS X MU ROUGHNESS Unidentified minteral Fresh Fresh Slightly Weathered Distinctly Weathered Moderately Weathered Highly Weathered Extremly Weathered MS Secondary mineral Chlorite VR RF Very Rough Rough Fracture Zone Drift Lift Handing Break Drilling Break RQD Rock Quality Push tube Percussion sampling Designation (%) Smooth Slockensided Calcite SON Sonic drilling TCR **Total Core** Iron Oxide POL Polished Quartz Recovery (%) Refer to explanatory notes for details of abbreviations and basis of descriptions CARDNO (QLD) PTY LTD

<<DrawingFile>> 18/10/2019 10:37 10.0.000 Datgel AGS RTA, Photo,

M30863 STX1903G.GPJ

CARDNO CORED BOREHOLE

CARDNO 2.01.6 LIB.GLB Log

Hole No: STX1903G Client: **Central Queensland Coal** Project: CQ Coal Styx Basin Geotechnical Investigation Location: Styx Basin Job No: M30863 Sheet: 14 of 16 Position: E773392.670 N7486730.310 55 MGA94 Angle from Horizontal: 90° Surface Elevation: 32.722 m AHD Rig Type: UDR650 Mounting: Truck **Driller: Waratah Coal** Casing Diameter: 0.1016/101.6 Bit Type: **Bit Condition:** Contractor: Waratah Coal Date Started: 28/8/19 Date Completed: 2/9/19 Logged By: AD Checked By: Material Description **Defect Description** Coring RL (m AHD) SOIL TYPE, plasticity or particle Average Natural (E **Estimated** Weathering Strength Is₍₅₀₎ MPa RQD (%) characteristic, colour, secondary Graphic Log Depth (Method 8 Additional Data Fluid & minor components Defect DEFECT TYPE, orientation, TCR (ROCK NAME, grain size and type, colour, fabric and texture, Axial O - Diametr Spacing shape, roughness, infilling (mm) 8 8 8 8 0.3 or coating, thickness, other _ ≅ ± £ ⊞ inclusions & minor components 130.16m 130.13 m; DB 130.20 - 130.70 m: multiple joints, 90°, UN, RF COAL, black, calcite veining at 90 degrees 130.93 m: DB 131 \downarrow CARBONACEOUS SILTSTONE, black, with 100 100 SANDSTONE, fine grained, laminated, grey, with horizontal to sub-horizontal siltstone laminations, minor bioturbation 131.29 m: DB -99 132 -100 132.93 m: DB 133 133.09m SANDSTONE, medium grained, grey, with minor sub-horizontal to 20 degree siltstone laminations and wisps, minor irregular carbonaceous inclusions -101 100 100 134 134.00 m: DB -102 БÃ 135 135.04 m: DB 135.15m SANDSTONE, fine grained, grey, with irregular carbonaceous inclusions SANDSTONE, fine to medium grained, grey, with rare sub-horizontal silty wisps, bioturbation -103 136 -104 100 100 137 137.10m SANDSTONE, fine to medium grained, grey, with minor silty wisps and laminations, with minor gravelly bands, bioturbation 137.44 m: DB -105 138 -106 139 100 100 11 SILTSTONE, laminated, dark-grey, with horizontal to sub-horizontal sandstone -107 139.94mlaminations DRILLING WATER ROCK STRENGTH DEFECT TYPE PLANARITY COATING Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling Rock roller Rotary core (85mm) Rotary core (61.94mm) Diatube concrete coring Push tube Water Level Extremly High Clean Joint Curved AD/T HFA Very High High Medium DIS VH Sheared zone Discontinuous SN Stained Bedding Parting Seam Irregular Planar VNR CT Veneer (thin or patchy) Coating (up to 1mm) water inflow Low Very Low ■ water outflow Foliation Stepped INFILL MATERIALS ν̈́L Vein Cleavage Crushed Seam ٧N UN Undulose ROCK QUALITY DESCRIPTIONS **ROCK WEATHERING** CL CS Carbonaceus X MU ROUGHNESS Unidentified minteral Fresh Fresh Slightly Weathered Distinctly Weathered Moderately Weathered Highly Weathered Extremly Weathered MS Secondary mineral Chlorite VR RF Very Rough Rough Fracture Zone Drift Lift Handing Break Drilling Break RQD Rock Quality Push tube Percussion sampling Designation (%) Smooth Slockensided Calcite SON Sonic drilling TCR **Total Core** Iron Oxide POL Polished Quartz Recovery (%) Refer to explanatory notes for details of abbreviations and basis of descriptions CARDNO (QLD) PTY LTD

Monitoring Tools

<<DrawningFile>> 18/10/2019 10:37 10.0.000 Datgel AGS RTA, Photo,

M30863 STX1903G.GPJ

CARDNO CORED BOREHOLE

CARDNO 2.01.6 LIB.GLB Log

Hole No: STX1903G Client: **Central Queensland Coal** Project: CQ Coal Styx Basin Geotechnical Investigation Location: Styx Basin Job No: M30863 Sheet: 15 of 16 Position: E773392.670 N7486730.310 55 MGA94 Angle from Horizontal: 90° Surface Elevation: 32.722 m AHD Rig Type: UDR650 Mounting: Truck **Driller: Waratah Coal** Contractor: Waratah Coal Casing Diameter: 0.1016/101.6 Bit Type: **Bit Condition:** Date Started: 28/8/19 Date Completed: 2/9/19 Logged By: AD Checked By: Material Description **Defect Description** Coring (m AHD) SOIL TYPE, plasticity or particle (E **Estimated** Average Weathering Strength Is₍₅₀₎ MPa Natural RQD (%) characteristic, colour, secondary Graphic Log Method 8 Depth (Additional Data Fluid & minor components Defect DEFECT TYPE, orientation, TCR ROCK NAME, grain size and type, colour, fabric and texture, 씸 Axial O - Diametr Spacing shape, roughness, infilling (mm) 8 8 8 8 0.3 or coating, thickness, other _ ≅ ± £ ⊞ inclusions & minor components 0 0 0 0 140 mCONGLOMERATE, fine to medium grained, grey, with sandstone matrix (continued) SANDSTONE, fine to medium grained, grey, with sub-horizontal siltstone laminations 140.47 m: DB 1 1 100 100 - 140.66 m: VN, 45°, PR, calcite SILTSTONE, dark-grey, with minor sandstone, soft sediment deformation 108 -109 141.87 m: VN, 45°, PR, calcite 141.89 m: VN, 45°, PR, calcite 141.90 m: DB 142 -110 100 100 143 SILTSTONE, laminated, dark-grey, with 143.56 m: DB sandstone laminations at 10 degrees, -111 tuffaceous bands 144 -112 БĞ 145 145.45 m: VN, 10°, PR, calcite 113 100 100 146 146.15 m: VN, 20°, PR, 4 mm, carbonate
146.20 m: JT, 30°, PR, RF
146.31 m: VN, 30°, PR, calcite -114 147.30m - 147.28 m: DB SILTSTONE, dark-grey, minor laminations, with rare sandstone laminations and tuffaceous -115 148 148.11 m: VN, 50°, PR, 3 mm, carbonate — 148.36 m: DB ∽ 148.44 m: DB 100 100 -116 149 11 -117 149.91 m: DB DRILLING WATER ROCK STRENGTH DEFECT TYPE PLANARITY COATING Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling Rock roller Rotary core (85mm) Rotary core (61.94mm) Diatube concrete coring Push tube Water Level Extremly High Clean Joint Curved Very High High Medium DIS Discontinuous AD/T HFA Sheared zone SN Stained Bedding Parting Seam Irregular Planar VNR CT Veneer (thin or patchy) Coating (up to 1mm) water inflow Low Very Low ■ water outflow Foliation Stepped INFILL MATERIALS ν̈́L Vein Cleavage Crushed Seam ٧N UN Undulose **ROCK QUALITY ROCK WEATHERING** CL CS Carbonaceus X MU ROUGHNESS DESCRIPTIONS Unidentified minteral Fresh Fresh Slightly Weathered Distinctly Weathered Moderately Weathered Highly Weathered Extremly Weathered MS Secondary mineral Chlorite VR RF Very Rough Rough Fracture Zone Drift Lift Handing Break Drilling Break RQD Rock Quality Push tube DW Percussion sampling Designation (%) Smooth Slockensided Calcite SON AH Sonic drilling TCR **Total Core** Iron Oxide POL Polished Quartz Recovery (%) Refer to explanatory notes for details of abbreviations and basis of descriptions CARDNO (QLD) PTY LTD

<<DrawningFile>> 18/10/2019 10:37 10.0.000 Datgel AGS RTA, Photo,

CARDNO 2.01.6 LIB.GLB Log CARDNO CORED BOREHOLE M30863_STX1903G.GPJ

Hole No: STX1903G Client: **Central Queensland Coal** Project: CQ Coal Styx Basin Geotechnical Investigation Location: Styx Basin Job No: M30863 Sheet: 16 of 16 Position: E773392.670 N7486730.310 55 MGA94 Angle from Horizontal: 90° Surface Elevation: 32.722 m AHD Rig Type: UDR650 Driller: Waratah Coal Mounting: Truck Contractor: Waratah Coal Casing Diameter: 0.1016/101.6 Bit Type: **Bit Condition:** Date Started: 28/8/19 Date Completed: 2/9/19 Logged By: AD Checked By: Material Description **Defect Description** Coring RL (m AHD) SOIL TYPE, plasticity or particle Estimated Average Natural Depth (m) Weathering Strength Is₍₅₀₎ MPa characteristic, colour, secondary RQD (%) Graphic Log Method 8 Additional Data Fluid & minor components Defect DEFECT TYPE, orientation, TCR (ROCK NAME, grain size and type, colour, fabric and texture, Axial O - Diametr Spacing shape, roughness, infilling (mm) 8 8 8 8 0.1 or coating, thickness, other JZIZE inclusions & minor components 150.00 m: VN, IR, 2 mm, carbonate SILTSTONE, dark-grey, minor laminations, with rare sandstone laminations and tuffaceous bands (continued) 100 100 151 H 100 100 152 -120 \perp 153 153.30m TERMINATED AT 153.30 m -121 154 -122 155 -123 156 -124 157 -125 158 -126 159 \perp -127 DRILLING WATER ROCK STRENGTH DEFECT TYPE PLANARITY COATING Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling Rock roller Rotary core (85mm) Rotary core (61.94mm) Diatube concrete coring Push tube AD/V AD/T HFA Water Level Extremly High Very High High Medium Joint Curved Discontinuous Clean DIS SN Sheared zone Stained BP SM FL VN Bedding Parting Seam Irregular Planar VNR CT Veneer (thin or patchy) Coating (up to 1mm) water inflow Low Very Low ■ water outflow Foliation Stepped INFILL MATERIALS ν̈́L Vein Cleavage Crushed Seam UN Undulose ROCK QUALITY DESCRIPTIONS CL CS FZ **ROCK WEATHERING** Carbonaceus X MU ROUGHNESS Unidentified minteral Fresh Fresh Slightly Weathered Distinctly Weathered Moderately Weathered Highly Weathered Extremly Weathered MS Secondary mineral Chlorite VR RF Very Rough Rough Fracture Zone Drift Lift Handing Break Drilling Break RQD Rock Quality Push tube DW Percussion sampling Designation (%) Smooth Slockensided Calcite SON AH Sonic drilling TCR **Total Core** Iron Oxide POL Polished Quartz Recovery (%) Refer to explanatory notes for details of abbreviations and basis of descriptions CARDNO (QLD) PTY LTD

APPENDIX

LABORATORY TEST DATA

Cardno (Qld) Pty Ltd ABN 57 051 074 992 Mackay Laboratory 71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

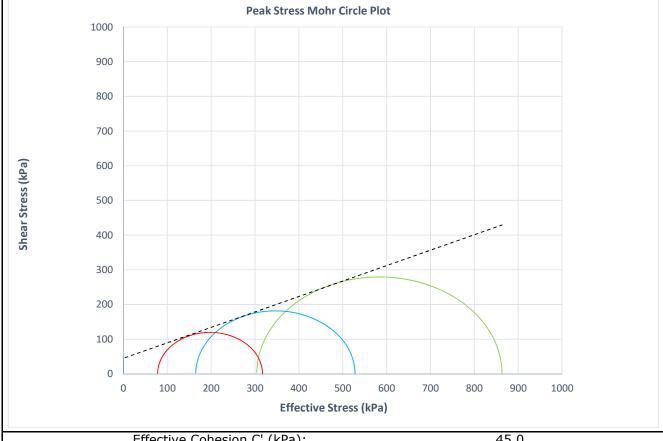
Consolidated Undrained Soil Triaxial Report

Client: Central Queensland Coal Report Number: 19-5324A
Address: Level 17, 240 Queen Street, Brisbane, Q Report Date: 2/12/2019

Project Number: M30863 Client Number:

Project Name: CQ Coal Styx Basin Geotechnical Investi Test Method AS 1289.6.4.2

Location: Borehole: STX1903G 1, Depth 11.48-11.63m Page 1


Date Sampled: 2/09/2019 Sample Number: 19-5324A Date Tested: 26/11/2019 Material Description: Brown Clay Sampled By: Sampled by Client Initial Wet Density: 2.15 t/m^3 Initial Sample Height: Initial Dry Density: 128.4 mm 1.95 t/m^3 Initial Sample Diameter: 102.4 mm L/D Ratio: 1.3:1 Initial Moisture: 0.96 % 10.5 % Skempton's B Response: Final Moisture: 13.1 % Sample Type:

Sampling Method:

As Received

Core

Moisture Method: AS 1289.2.1.1 Strain Rate %/min: 0.033 0.021 0.020

Effective Cohesion C' (kPa): 45.0 Effective Angle of Friction φ' (Degrees): 24.0 Failure Criteria: Peak Deviator Stress

Sample/s supplied by Client Note: Graph not to scale Membrane Thickness: 0.3mm

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

APPROVED SIGNATORY

Document Code: GEO-QF-UNGR 18G

19-5325A

LAB REF NO:

CLIENT:

CARDNO (QLD) PTY LTD 71 MAGGIOLO DRIVE MACKAY QLD TRIAXIAL PROPERTIES OF A ROCK

JOB NO:

M30863

Sheet 1 of 7 Mackay Laboratory

ADDRESS: Level 17, 240 Queen Street, Brisbane, QLD 4000

Central Queenssland Coal

PROJECT:CQ Coal Styx Basin Geotechnical InvestigationSAMPLED BY:ClientDATE:02-Sep-19LOCATION:Styx Coal MineTESTED BY:PMDATE:08-Nov-19

MATERIAL: Sandstone CHECKED BY: DH DATE: 09-Nov-19

TEST PROCEDURES: D7012-14 Method A; D4543 CLIENT REF:

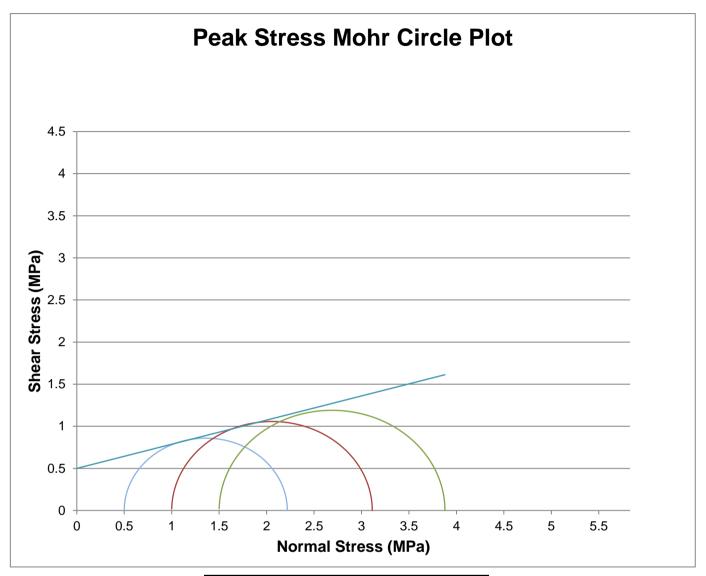
Seam: -		Sample Details			
		Borehole:	STX1903G	Sample number:	3
		Depth from (m):	20.75	Depth to (m):	21.00
Test Apparatus:	Shimadzu UEH-50	Length (mm):		206	5.8
Measurement:	Displacement Transducer	Diameter (mm):		100).9
weasurement.	Displacement Hansudcei	Moisture Content	(%):	9.	0
Rate of Loading (MPa/min):	0.46	Mass of Sample (g):	366	4.0
Time to Failure (min):	10.15	Dry Density (t/m3)	:	2.0)3
Test Duration (min):	10.25	Wet Density (t/m3)):	2.2	22

Intact Strength			
	Confining Pressure (MPa)	Maximum Principal Stress (MPa):	Axial Strain (%)
Stage 1	0.5	2.2	1.21
Stage 2	1	3.1	3.22
Stage 3	1.5	3.9	9.52
Residual Strength			
	Confining Pressure (MPa)	Median Axial Stress (MPa)	
Residual Stress 1			
Residual Stress 2			
Residual Stress 3			
Residual Stress 4			
Residual Stress 5			

Dominant structural features with respect to core axis

Before Photo	After Photo	Failure Diagram
		(c) Mixed mode

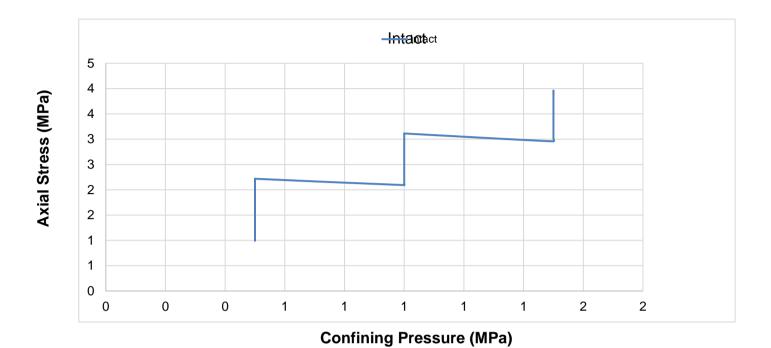
Comments: Testing was done at Room Temperature.

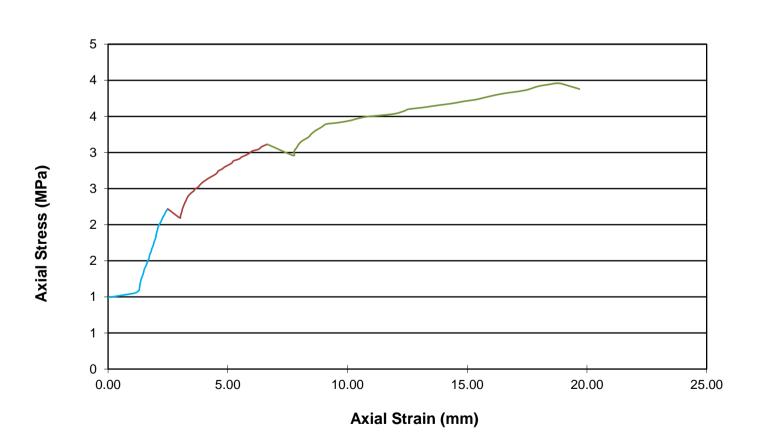


APPROVED SIGNATORY

Trudie Bradhury - Analy

Sheet 2 of 7 Mackay Laboratory




Estimated Peak Envelope		
Angle	16.0 °	
Cohesion	0.5 MPa	
Notes:	Graph not to scale	
Lab Ref No.:	19-5325A	

Sheet 4 of 7

Mackay Laboratory **LAB REF NO:** 19-5325A

Sheet 1 of 3 Mackay Laboratory

CLIENT: Central Queenssland Coal JOB NO: M30863 LAB REF NO: 19-5328A

ADDRESS: Level 17, 240 Queen Street, Brisbane, QLD 4000

PROJECT:CQ Coal Styx Basin Geotechnical InvestigationSAMPLED BY:ClientDATE:02-Sep-19LOCATION:Styx Coal MineTESTED BY:PMDATE:08-Nov-19

MATERIAL: Mudstone CHECKED BY: DH DATE: 09-Nov-19
TEST PROCEDURES: D7012-14 Method A; D4543 CLIENT REF:

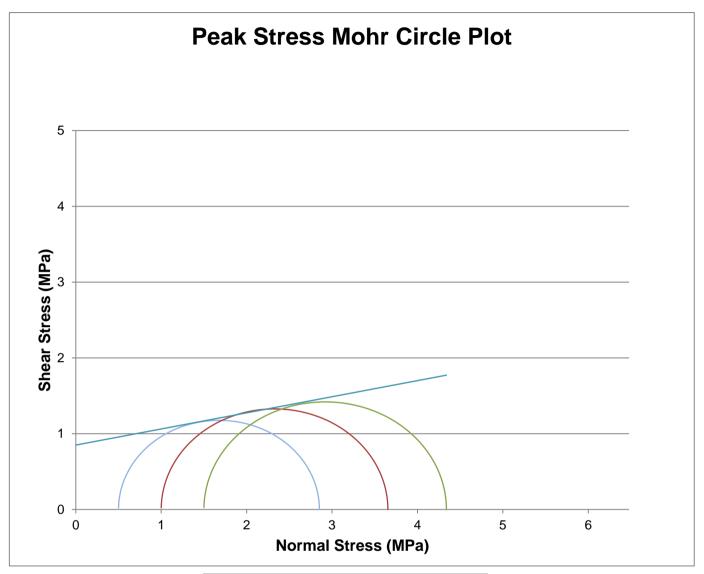
Seam: -		Sample Details			
		Borehole:	STX1903G	Sample number:	6
		Depth from (m):	25.60	Depth to (m):	25.88
Test Apparatus:	Shimadzu UEH-50	Length (mm):		209	9.3
Measurement:	Displacement Transducer	Diameter (mm):		101	1.1
weasurement.	Displacement Hansudcei	Moisture Content	(%):	11	.6
Rate of Loading (MPa/min):	0.45	Mass of Sample (g):	383	9.0
Time to Failure (min):	9.01	Dry Density (t/m3)):	2.0	05
Test Duration (min):	9.22	Wet Density (t/m3):	2.2	28

Intact Strength			
	Confining Pressure (MPa)	Maximum Principal Stress (MPa):	Axial Strain (%)
Stage 1	0.5	2.9	0.67
Stage 2	1	3.7	1.13
Stage 3	1.5	4.3	2.20
	Residual Strength		
	Confining Pressure (MPa)	Median Axial Stress (MPa)	
Residual Stress 1			
Residual Stress 2			
Residual Stress 3			
Residual Stress 4			
Residual Stress 5			

Dominant structural features with respect to core axis

Before Photo	After Photo	Failure Diagram
		(c) Mixed mode

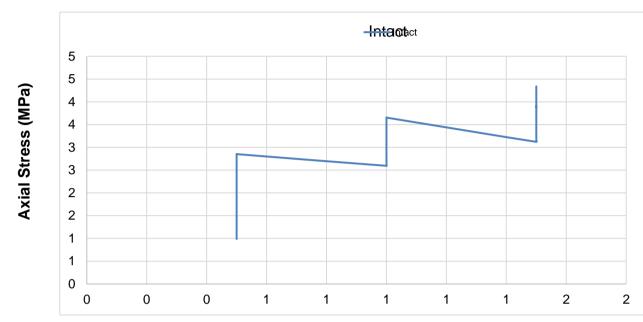
Comments: Testing was done at Room Temperature.



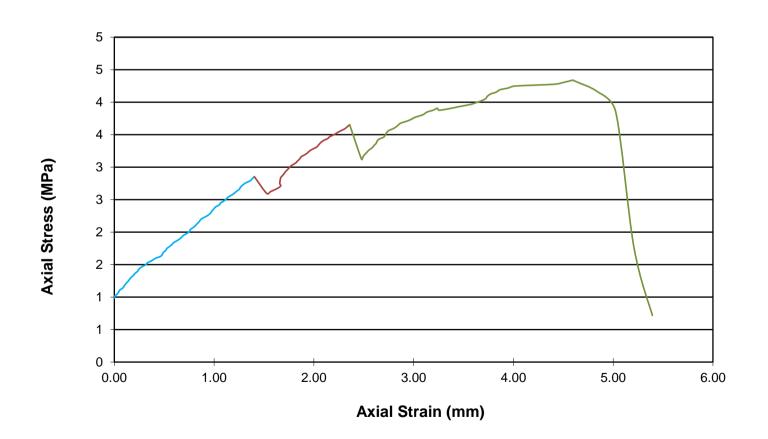
APPROVED SIGNATORY

Trudie Bradbury - Analyst

Sheet 2 of 3 Mackay Laboratory



Estimated Peak Envelope	
Angle	12.0 °
Cohesion	0.9 MPa
Notes:	Graph not to scale
Lab Ref No.:	19-5328A



Sheet 3 of 3 Mackay Laboratory

LAB REF NO: 19-5328A

CLIENT REF:

TEST PROCEDURES:

CARDNO (QLD) PTY LTD 71 MAGGIOLO DRIVE MACKAY QLD TRIAXIAL PROPERTIES OF A ROCK

Sheet 1 of 7 Mackay Laboratory

CLIENT: Central Queenssland Coal JOB NO: M30863 LAB REF NO: 19-5356A

ADDRESS: Level 17, 240 Queen Street, Brisbane, QLD 4000

D7012-14 Method A; D4543

PROJECT:CQ Coal Styx Basin Geotechnical InvestigationSAMPLED BY:ClientDATE:02-Sep-19LOCATION:Styx Coal MineTESTED BY:PMDATE:07-Nov-19

MATERIAL: Interlaminated Sandstone CHECKED BY: DH DATE: 08-Nov-19

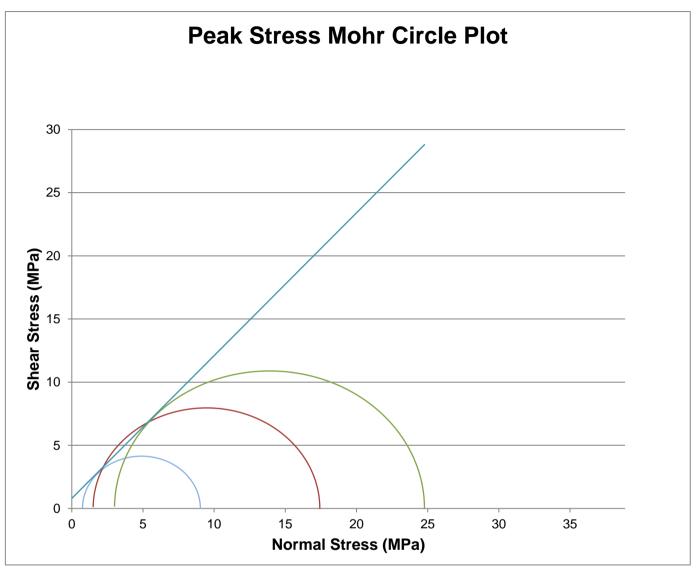
Seam: -		Sample Details			
		Borehole:	STX1903G	Sample number:	UCS-34
		Depth from (m):	40.68	Depth to (m):	40.84
Test Apparatus:	Shimadzu UEH-50	Length (mm):		125	5.4
Measurement:	Displacement Transducer	Diameter (mm):		60	.8
weasurement.	Displacement Transducei	Moisture Content	(%):	6.	3
Rate of Loading (MPa/min):	13.20	Mass of Sample (g):	859	9.2
Time to Failure (min):	4.02	Dry Density (t/m3)):	2.2	22
Test Duration (min):	4.18	Wet Density (t/m3):	2.3	36

Intact Strength			
	Confining Pressure (MPa)	Maximum Principal Stress (MPa):	Axial Strain (%)
Stage 1	0.75	9.0	0.40
Stage 2	1.5	17.4	2.31
Stage 3	3	24.8	4.09
Residual Strength			
	Confining Pressure (MPa)	Median Axial Stress (MPa)	
Residual Stress 1	3	23.2	
Residual Stress 2	1.5	18.4	
Residual Stress 3	0.75	12.8	
Residual Stress 4	0.5	9.6	
Residual Stress 5	0.25	6.8	

Dominant structural features with respect to core axis

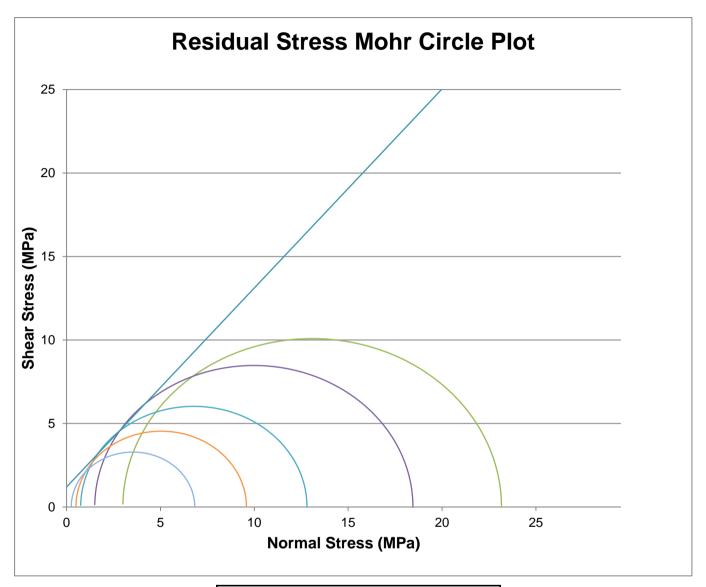
Before Photo	After Photo	Failure Diagram
		(c) Mixed mode

Comments: Testing was done at Room Temperature.


APPROVED SIGNATORY

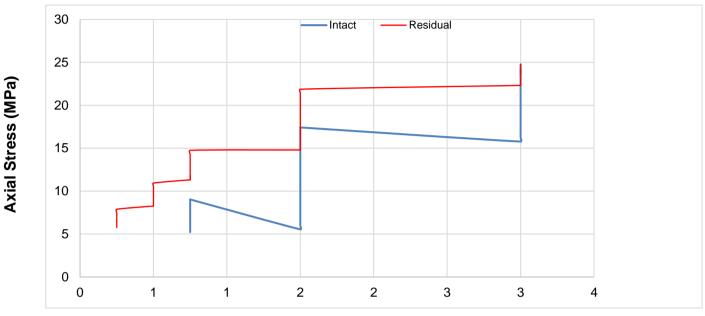
Trudie Bradbury - Analyst

Trudie Bradbury - Analyst NATA Accreditation Number 910 Mackay Laboratory

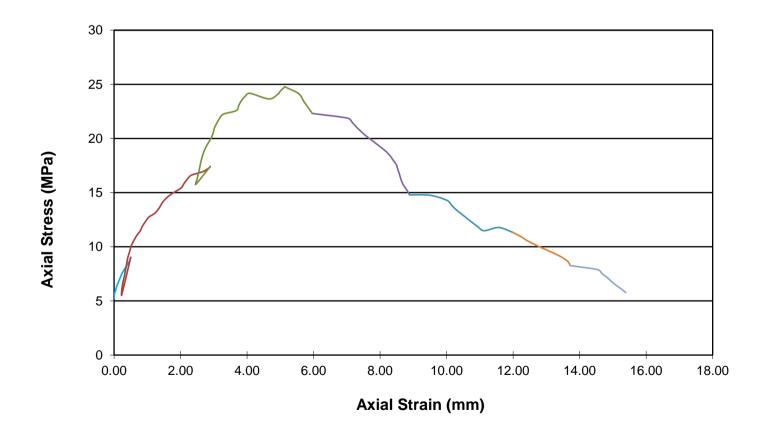

Sheet 2 of 7 Mackay Laboratory

Estimated Peak Envelope		
Angle	48.5 °	
Cohesion	0.8 MPa	
Notes:	Graph not to scale	
Lab Ref No.:	19-5356A	

Sheet 3 of 7 Mackay Laboratory

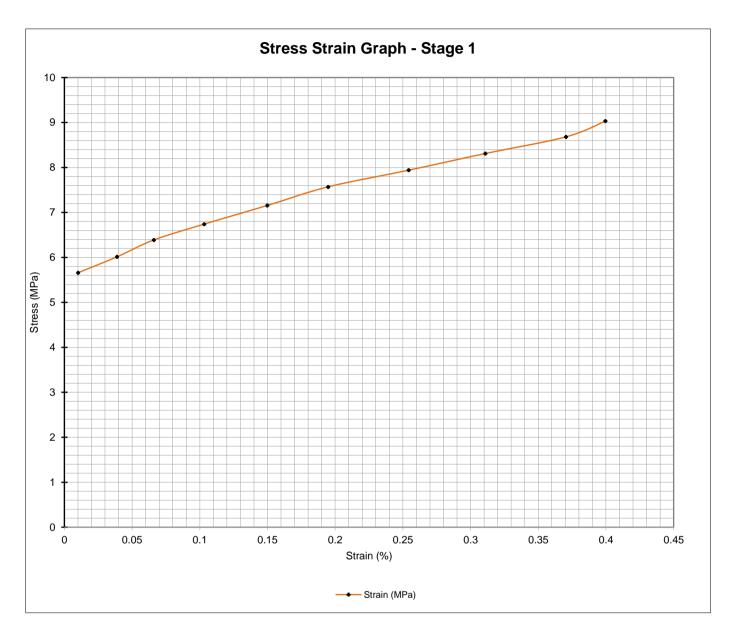


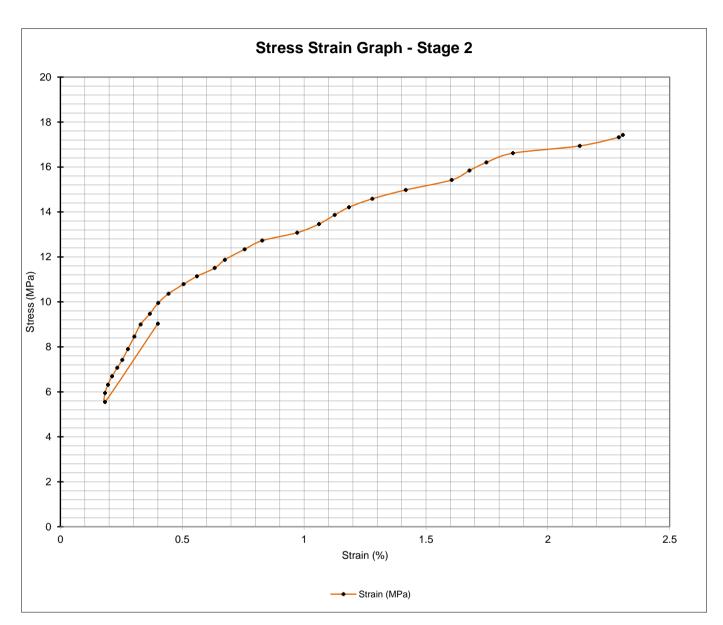
Estimated Residual Envelope	
Angle	50.0 °
Cohesion	1.2 MPa
Notes:	Graph not to scale
Lab Ref No.:	19-5356A


5

CARDNO (QLD) PTY LTD 71 MAGGIOLO DRIVE MACKAY QLD TRIAXIAL PROPERTIES OF A ROCK

Sheet 4 of 7 Mackay Laboratory





Sheet 5 of 7 Mackay Laboratory

Sheet 6 of 7 Mackay Laboratory

Sheet 7 of 7 Mackay Laboratory

Sheet 1 of 7 Mackay Laboratory

CLIENT: Central Queenssland Coal JOB NO: M30863 LAB REF NO: 19-5371A

ADDRESS: Level 17, 240 Queen Street, Brisbane, QLD 4000

PROJECT:CQ Coal Styx Basin Geotechnical InvestigationSAMPLED BY:ClientDATE:02-Sep-19LOCATION:Styx Coal MineTESTED BY:PMDATE:07-Nov-19

MATERIAL: Carbonaceous Siltstone CHECKED BY: DH DATE: 08-Nov-19

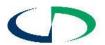
TEST PROCEDURES: D7012-14 Method A; D4543 CLIENT REF:

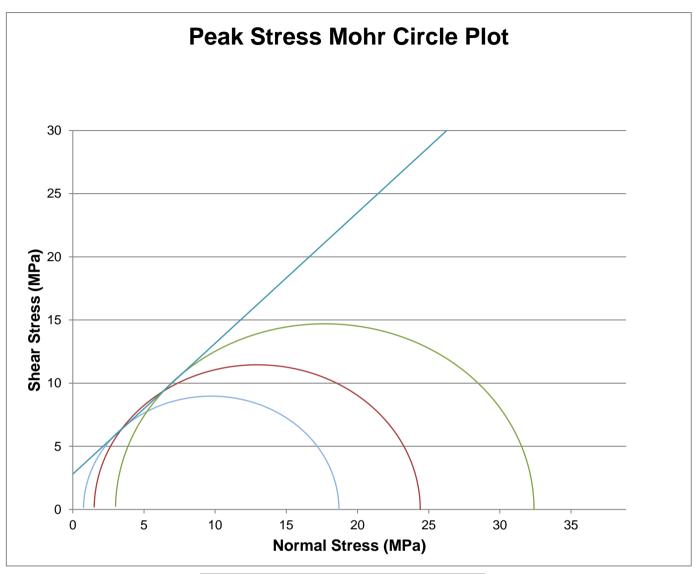
Seam: -		Sample Details			
		Borehole:	STX1903G	Sample number:	UCS-49
		Depth from (m):	50.67	Depth to (m):	50.93
Test Apparatus:	Shimadzu UEH-50	Length (mm):		5.3	
Magauramanti	Measurement: Displacement Transducer	Diameter (mm):		60.9	
weasurement.		Moisture Content	(%):	3.	1
Rate of Loading (MPa/min):	14.30	Mass of Sample (g):		867.6	
Time to Failure (min):	4.02	Dry Density (t/m3)):	2.3	31
Test Duration (min):	4.18	Wet Density (t/m3):	2.0	38

Intact Strength			
	Confining Pressure (MPa)	Maximum Principal Stress (MPa):	Axial Strain (%)
Stage 1	0.75	18.7	0.48
Stage 2	1.5	24.4	0.75
Stage 3	3	32.4	1.02
Residual Strength			
	Confining Pressure (MPa)	Median Axial Stress (MPa)	
Residual Stress 1	3	30.6	
Residual Stress 2	1.5	24.7	
Residual Stress 3	0.75	15.8	
Residual Stress 4	0.5	12.5	
Residual Stress 5	0.25	10.2	

Dominant structural features with respect to core axis

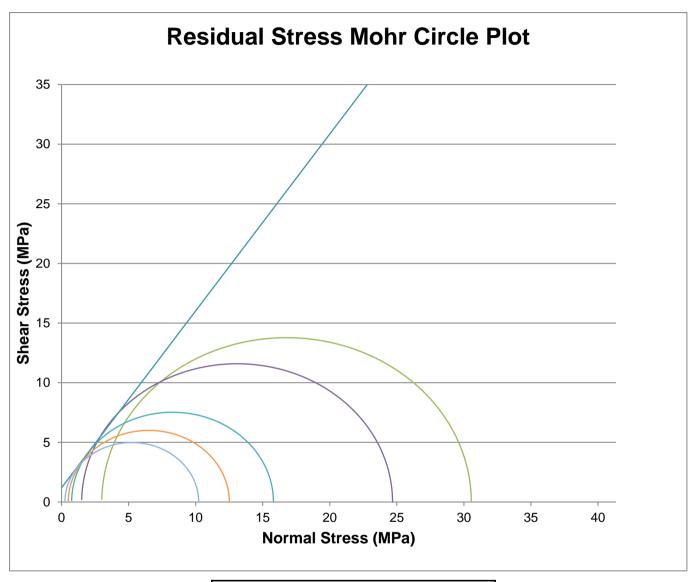
Before Photo	After Photo	Failure Diagram
		(c) Mixed mode


Comments: Testing was done at Room Temperature.

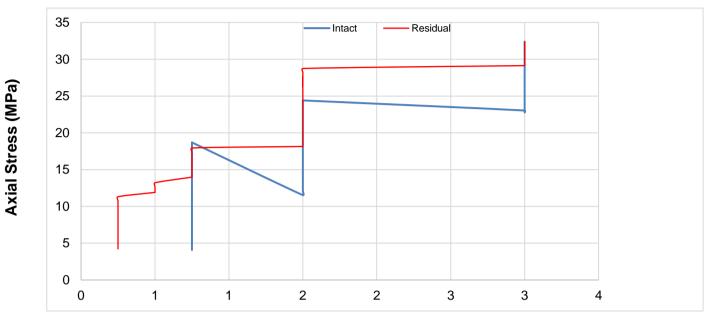

APPROVED SIGNATORY

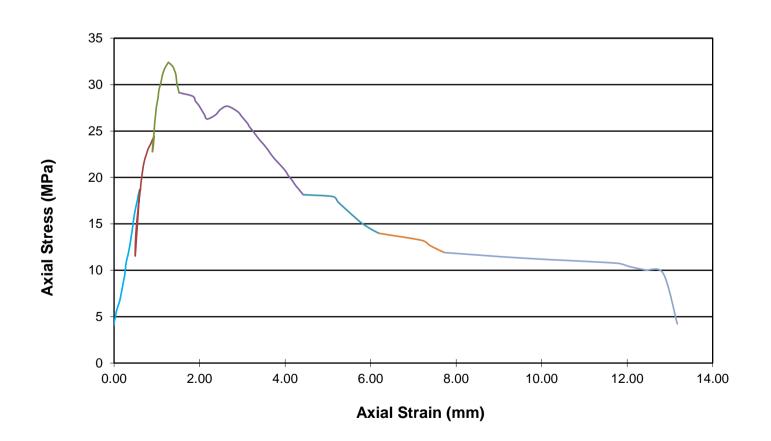
910 Mackay Laboratory

Trudie Bradbury - Analyst NATA Accreditation Number

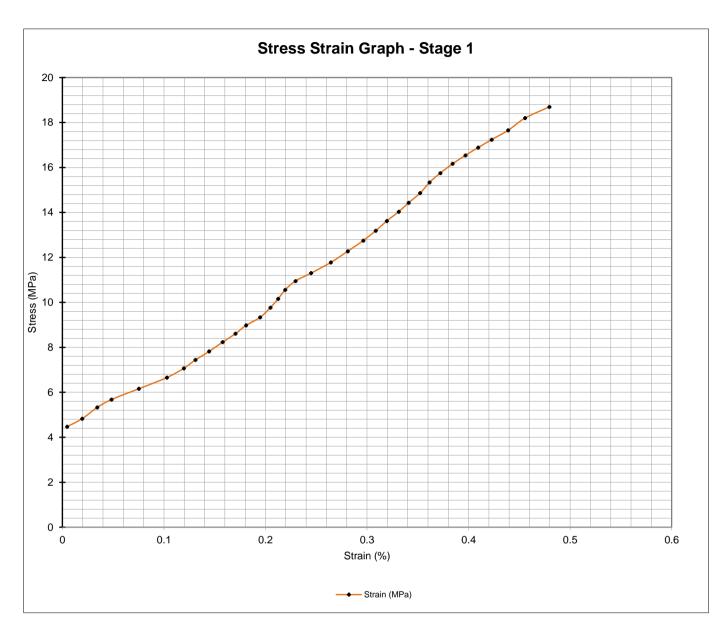

Sheet 2 of 7 Mackay Laboratory

Estimated Peak Envelope	
Angle	46.0 °
Cohesion	2.8 MPa
Notes:	Graph not to scale
Lab Ref No.:	19-5371A

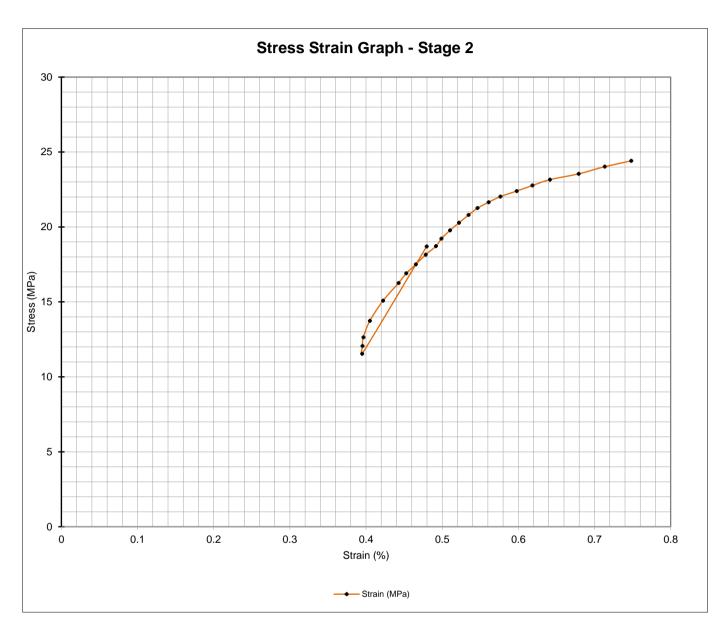

Sheet 3 of 7 Mackay Laboratory


Estimated Residual Envelope	
Angle	56.0 °
Cohesion	1.2 MPa
Notes:	Graph not to scale
Lab Ref No.:	19-5371A

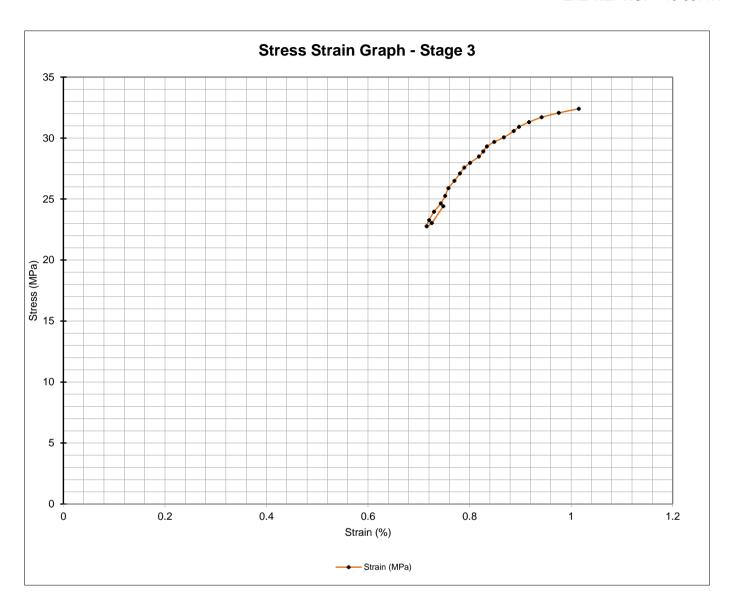
Sheet 4 of 7 Mackay Laboratory



Confining Pressure (MPa)



Sheet 5 of 7 Mackay Laboratory



Sheet 6 of 7 Mackay Laboratory

Sheet 7 of 7 Mackay Laboratory

Sheet 1 of 7 Mackay Laboratory

CLIENT: Central Queenssland Coal JOB NO: M30863 LAB REF NO: 19-5420A

ADDRESS: Level 17, 240 Queen Street, Brisbane, QLD 4000

PROJECT:CQ Coal Styx Basin Geotechnical InvestigationSAMPLED BY:ClientDATE:02-Sep-19LOCATION:Styx Coal MineTESTED BY:PMDATE:07-Nov-19

MATERIAL: Sandstone CHECKED BY: DH DATE: 08-Nov-19

TEST PROCEDURES: D7012-14 Method A; D4543 CLIENT REF:

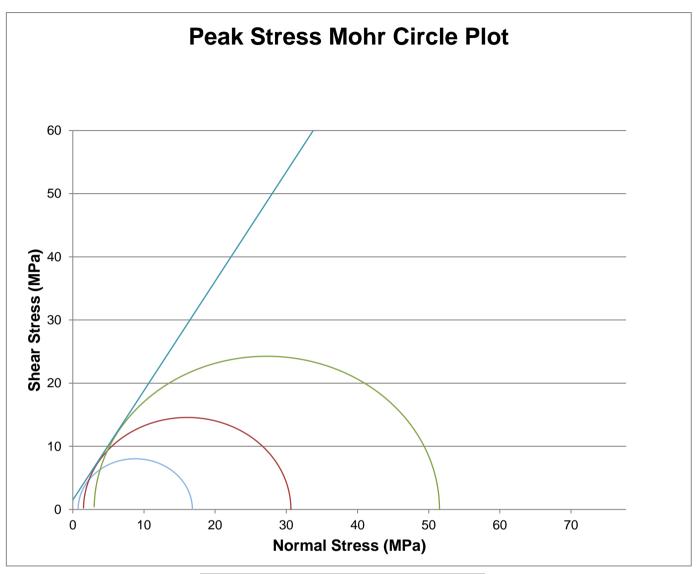
Seam: -		Sample Details			
		Borehole:	STX1903G	Sample number:	UCS-98
		Depth from (m):	89.91	Depth to (m):	90.11
Test Apparatus:	Shimadzu UEH-50	Length (mm):		126	6.6
Measurement:	Displacement Transducer	Diameter (mm):		61	.0
weasurement.	Displacement Hansudcei	Moisture Content	(%):	3.	0
Rate of Loading (MPa/min):	20.01	Mass of Sample (g):	918	3.7
Time to Failure (min):	3.45	Dry Density (t/m3)):	2.4	41
Test Duration (min):	4.07	Wet Density (t/m3):	2.4	18

Intact Strength			
	Confining Pressure (MPa)	Maximum Principal Stress (MPa):	Axial Strain (%)
Stage 1	0.75	16.8	0.34
Stage 2	1.5	30.6	0.58
Stage 3	3	51.5	1.02
Residual Strength			
	Confining Pressure (MPa)	Median Axial Stress (MPa)	
Residual Stress 1	3	39.3	
Residual Stress 2	1.5	25.0	
Residual Stress 3	0.75	17.3	
Residual Stress 4	0.5	12.6	
Residual Stress 5	0.25	8.8	

Dominant structural features with respect to core axis

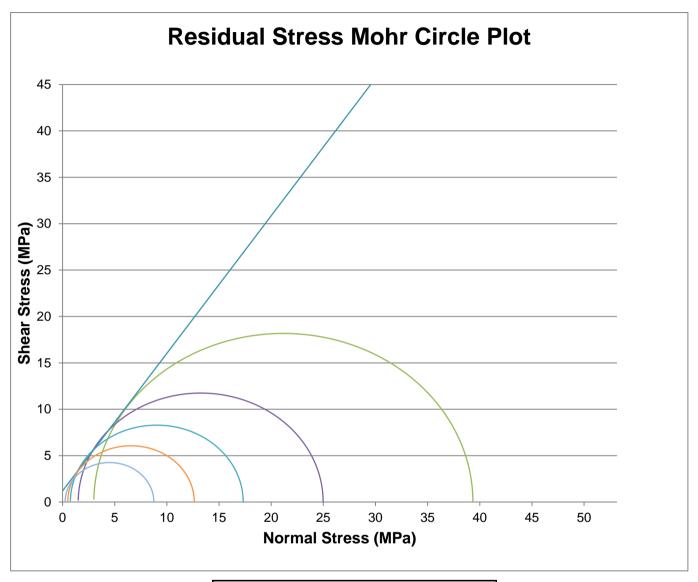
Before Photo	After Photo	Failure Diagram
		(c) Mixed mode

Comments: Testing was done at Room Temperature.

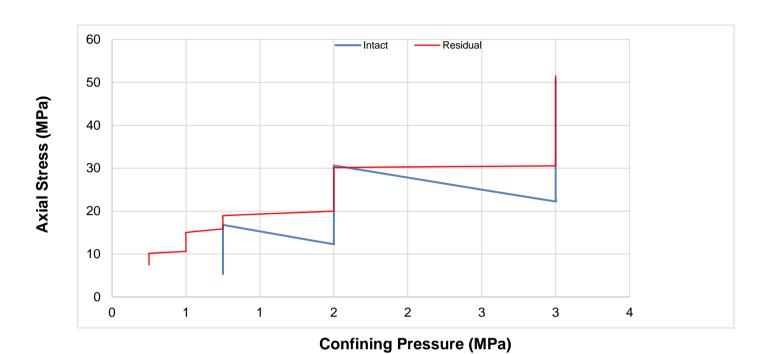


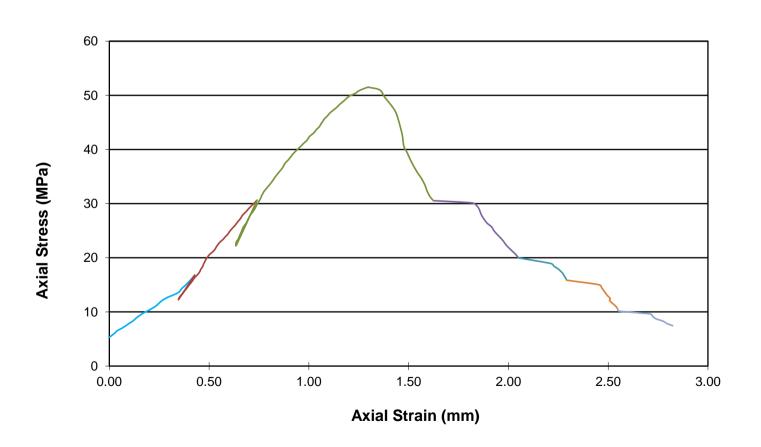
APPROVED SIGNATORY

Trudie Bradbury - Analyst

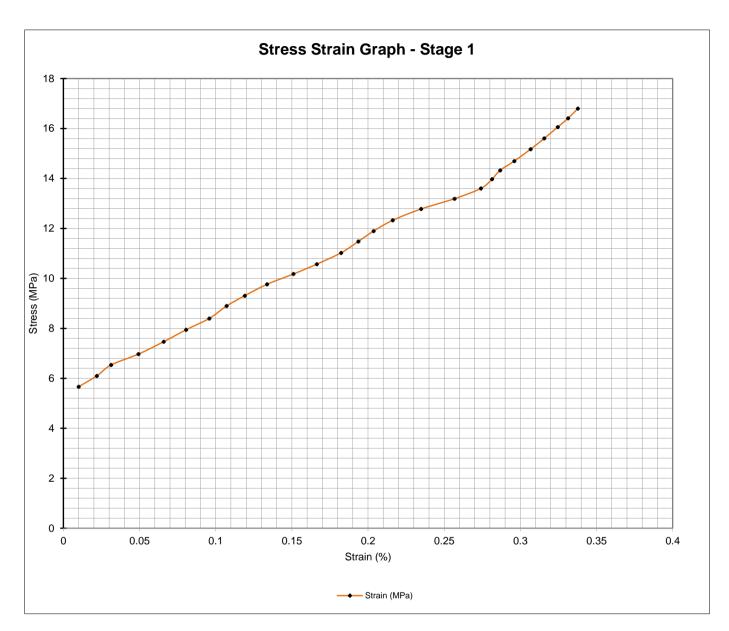

Sheet 2 of 7 Mackay Laboratory

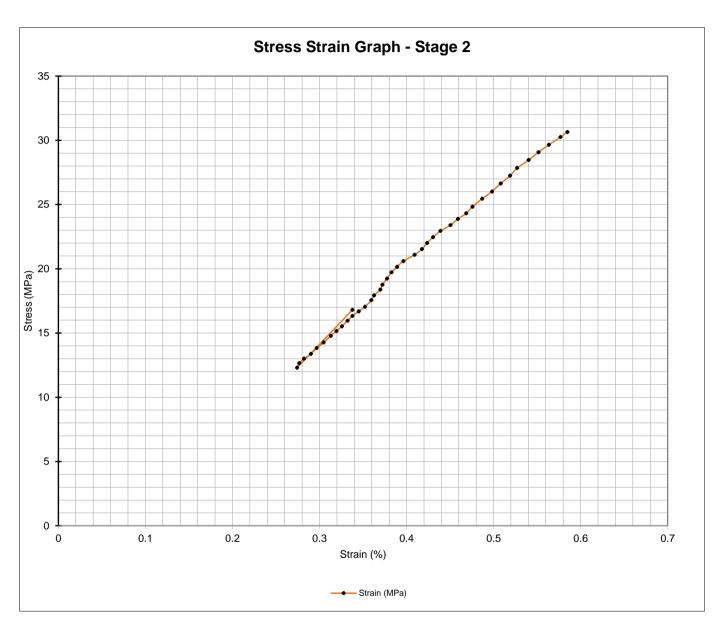
Estimated Peak Envelope			
Angle	60.0 °		
Cohesion	1.5 MPa		
Notes:	Graph not to scale		
Lab Ref No.:	19-5420A		


Sheet 3 of 7 Mackay Laboratory

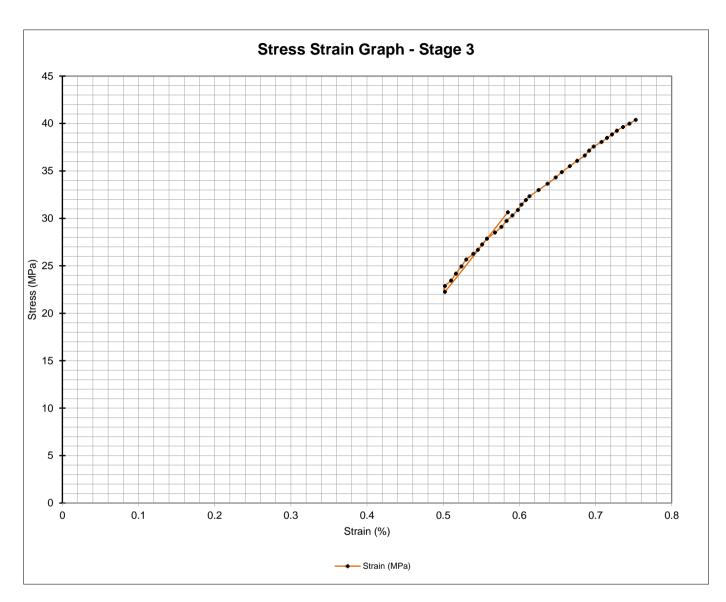


Estimated Residual Envelope			
Angle	56.0 °		
Cohesion	1.2 MPa		
Notes:	Graph not to scale		
Lab Ref No.:	19-5420A		


Sheet 4 of 7 Mackay Laboratory



Sheet 5 of 7 Mackay Laboratory



Sheet 6 of 7 Mackay Laboratory

Sheet 7 of 7 Mackay Laboratory

19-5443A

LAB REF NO:

CARDNO (QLD) PTY LTD 71 MAGGIOLO DRIVE MACKAY QLD TRIAXIAL PROPERTIES OF A ROCK

Sheet 1 of 7 Mackay Laboratory

CLIENT: Central Queenssland Coal JOB NO: M30863

ADDRESS: Level 17, 240 Queen Street, Brisbane, QLD 4000

PROJECT: CQ Coal Styx Basin Geotechnical Investigation SAMPLED BY: Client DATE: 02-Sep-19

LOCATION:Styx Coal MineTESTED BY:PMDATE:07-Nov-19MATERIAL:Interlaminated SandstoneCHECKED BY:DHDATE:08-Nov-19

TEST PROCEDURES: D7012-14 Method A; D4543 CLIENT REF:

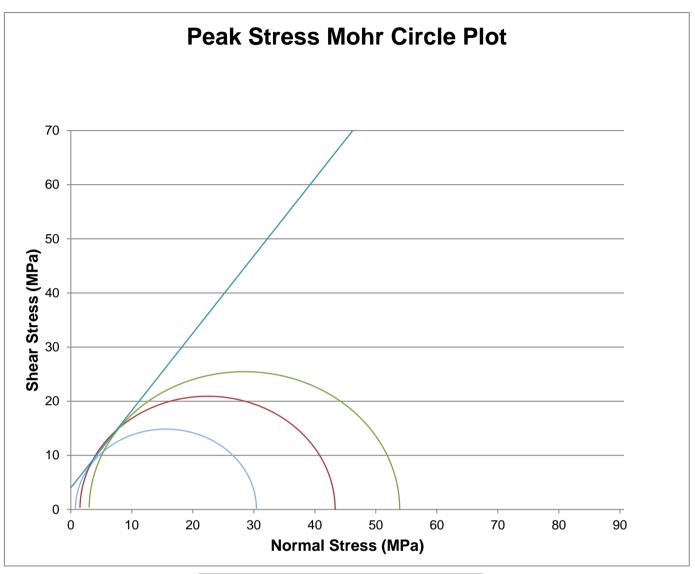
Seam: -		Sample Details			
		Borehole:	STX1903G	Sample number:	UCS-121
		Depth from (m):	131.29	Depth to (m):	131.48
Test Apparatus:	Shimadzu UEH-50	Length (mm):		126	5.1
Measurement:	Displacement Transducer	Diameter (mm):		60	.9
weasurement.	Displacement Transducei	Moisture Content	(%):	4.	5
Rate of Loading (MPa/min):	36.02	Mass of Sample (g):	894	1.7
Time to Failure (min):	2.50	Dry Density (t/m3)):	2.3	33
Test Duration (min):	3.09	Wet Density (t/m3):	2.4	14

Intact Strength			
	Confining Pressure (MPa)	Maximum Principal Stress (MPa):	Axial Strain (%)
Stage 1	0.75	30.4	0.55
Stage 2	1.5	43.3	0.72
Stage 3	3	53.9	2.11
Residual Strength			
	Confining Pressure (MPa)	Median Axial Stress (MPa)	
Residual Stress 1	3	46.3	
Residual Stress 2	1.5	38.6	
Residual Stress 3	0.75	30.1	
Residual Stress 4	0.5	25.9	
Residual Stress 5	0.25	17.7	

Dominant structural features with respect to core axis

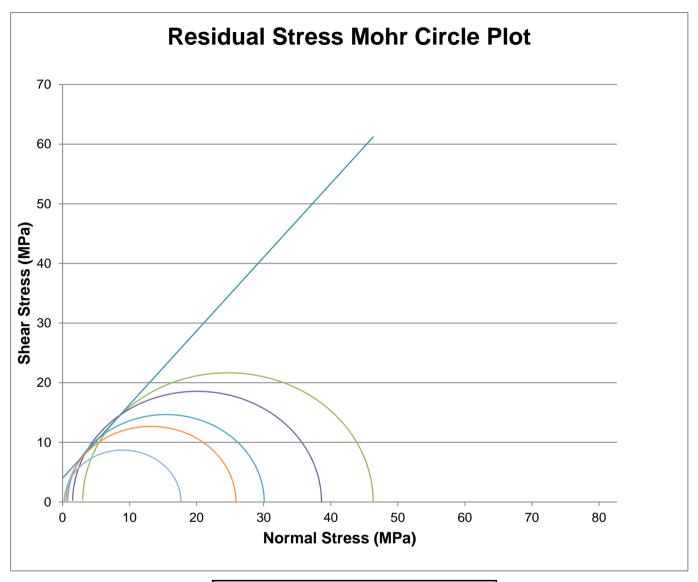
Before Photo	After Photo	Failure Diagram
		(e) Tensile dominated

Comments: Testing was done at Room Temperature.

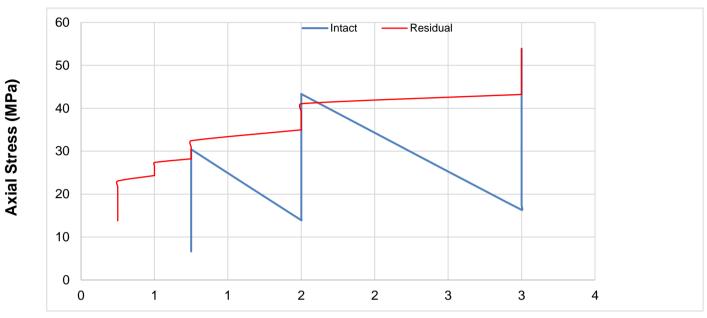

APPROVED SIGNATORY

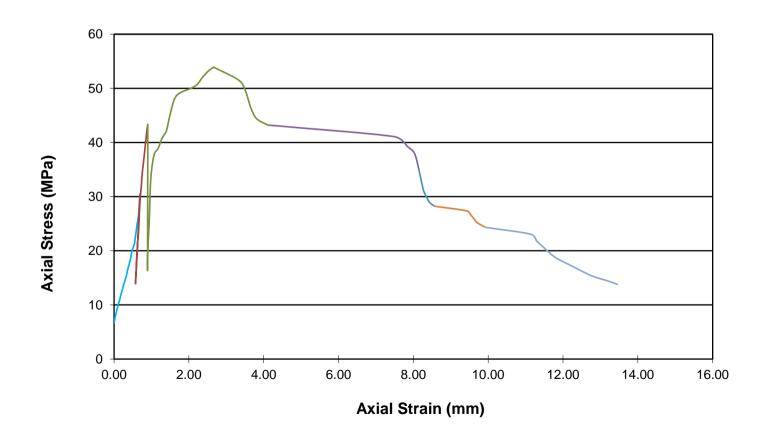
Trudie Bradhury - Analy

Trudie Bradbury - Analyst NATA Accreditation Number 910 Mackay Laboratory

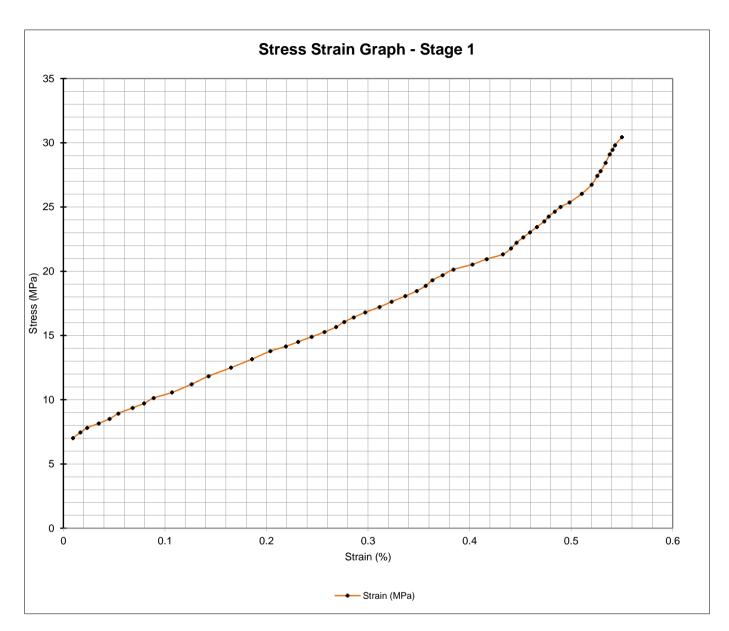

Sheet 2 of 7 Mackay Laboratory

Estimated Peak Envelope			
Angle	gle 55.0 °		
Cohesion	4.0 MPa		
Notes:	Graph not to scale		
Lab Ref No.:	19-5443A		


Sheet 3 of 7 Mackay Laboratory


Estimated Residual Envelope			
Angle	51.0 °		
Cohesion	4.0 MPa		
Notes:	Graph not to scale		
Lab Ref No.:	19-5443A		

Sheet 4 of 7 Mackay Laboratory



Confining Pressure (MPa)


Sheet 5 of 7 Mackay Laboratory

5


CARDNO (QLD) PTY LTD 71 MAGGIOLO DRIVE MACKAY QLD TRIAXIAL PROPERTIES OF A ROCK

Sheet 6 of 7 Mackay Laboratory

Sheet 7 of 7 Mackay Laboratory

CLIENT REF:

TEST PROCEDURES:

CARDNO (QLD) PTY LTD 71 MAGGIOLO DRIVE MACKAY QLD TRIAXIAL PROPERTIES OF A ROCK

Sheet 1 of 7 Mackay Laboratory

CLIENT: Central Queenssland Coal JOB NO: M30863 LAB REF NO: 19-5447A

ADDRESS: Level 17, 240 Queen Street, Brisbane, QLD 4000

D7012-14 Method A; D4543

PROJECT:CQ Coal Styx Basin Geotechnical InvestigationSAMPLED BY:ClientDATE:02-Sep-19LOCATION:Styx Coal MineTESTED BY:PMDATE:07-Nov-19

MATERIAL: Interlaminated Sandstone CHECKED BY: DH DATE: 08-Nov-19

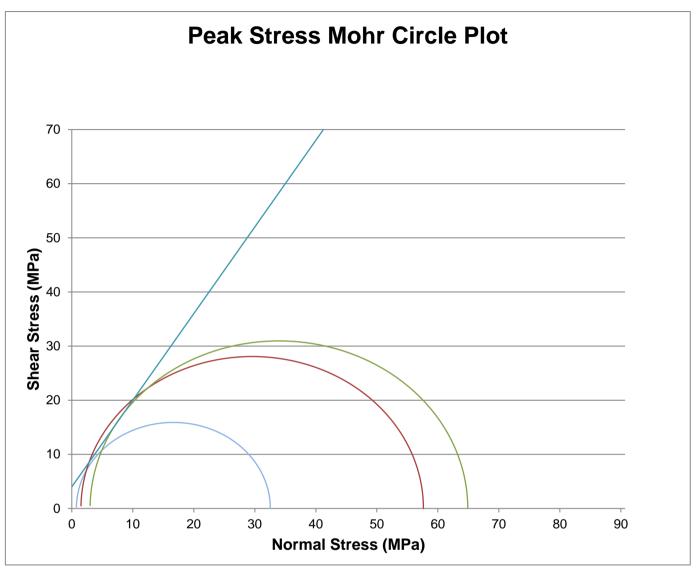
Seam: -		Sample Details			
		Borehole:	STX1903G	Sample number:	UCS-125
		Depth from (m):	132.92	Depth to (m):	133.10
Test Apparatus:	Shimadzu UEH-50	Length (mm):		125	5.8
Measurement:	Displacement Transducer	Diameter (mm):		61	.0
weasurement.	Displacement Hansudcei	Moisture Content	(%):	2.	2
Rate of Loading (MPa/min):	22.21	Mass of Sample (g):	92	1.3
Time to Failure (min):	3.05	Dry Density (t/m3)):	2.4	45
Test Duration (min):	3.29	Wet Density (t/m3):	2.5	51

Intact Strength			
	Confining Pressure (MPa)	Maximum Principal Stress (MPa):	Axial Strain (%)
Stage 1	0.75	32.5	0.45
Stage 2	1.5	57.6	0.66
Stage 3	3	64.9	3.05
Residual Strength			
Confining Pressure (MPa) Median Axial Stress (MPa)			
Residual Stress 1	3	19.1	
Residual Stress 2	1.5	14.2	
Residual Stress 3	0.75	11.3	
Residual Stress 4	0.5	9.5	
Residual Stress 5	0.25	7.7	

Dominant structural features with respect to core axis

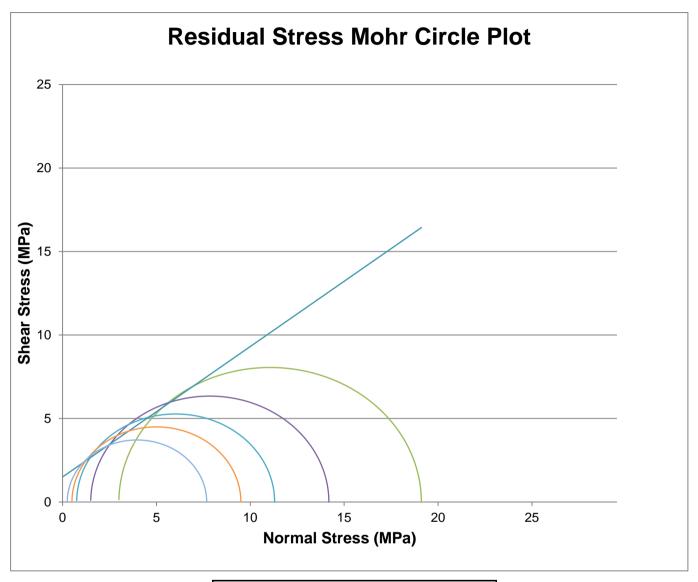
Before Photo	After Photo	Failure Diagram
		(a) Single shear plane

Comments: Testing was done at Room Temperature.



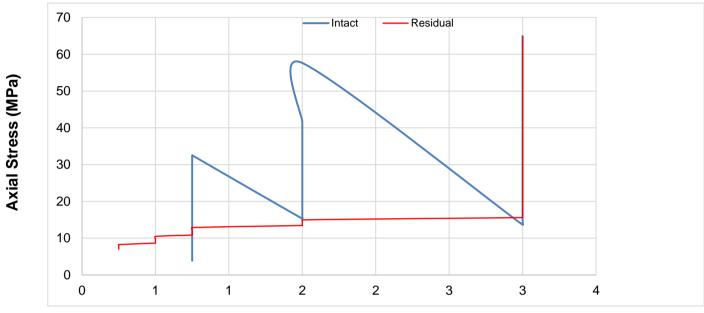
APPROVED SIGNATORY

Trudie Bradbury - Analyst

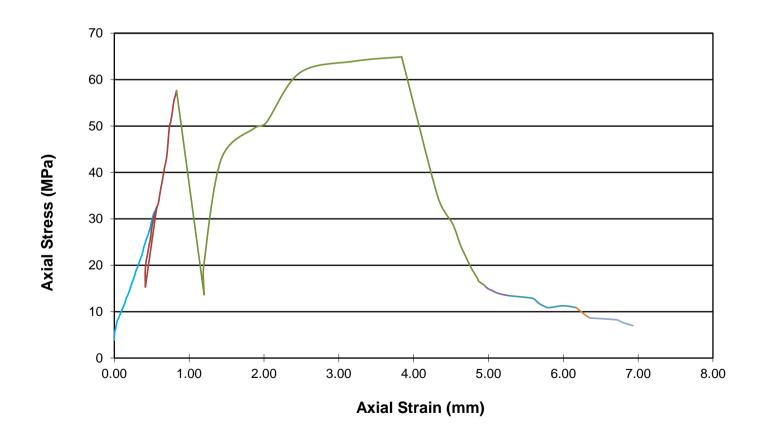

Sheet 2 of 7 Mackay Laboratory

Estimated Peak Envelope		
Angle 58.0 °		
Cohesion	4.0 MPa	
Notes:	Graph not to scale	
Lab Ref No.:	19-5447A	

Sheet 3 of 7 Mackay Laboratory

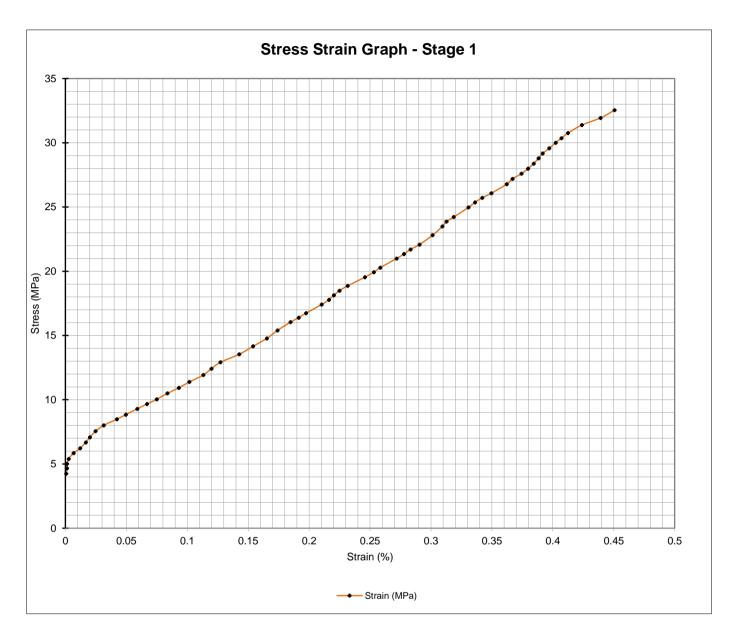


Estimated Residual Envelope		
Angle 38.0 °		
Cohesion 1.5 MPa		
Notes: Graph not to scale		
Lab Ref No.:	19-5447A	

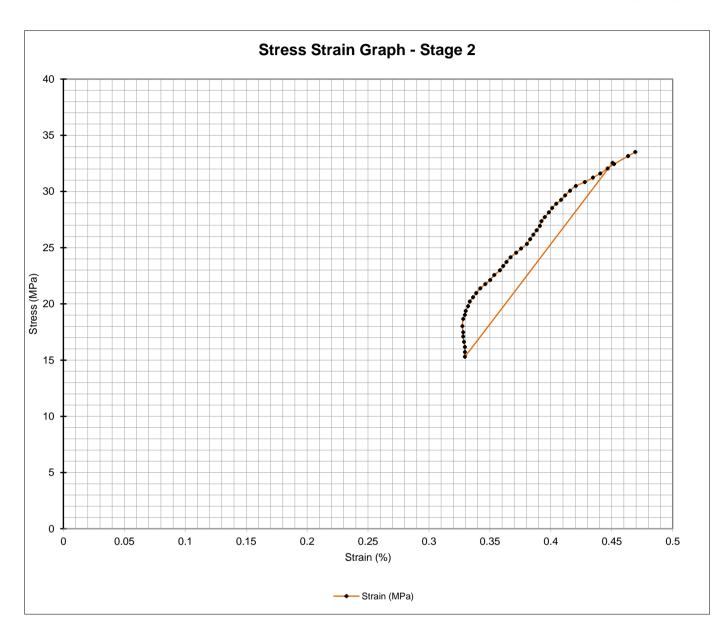


Sheet 4 of 7

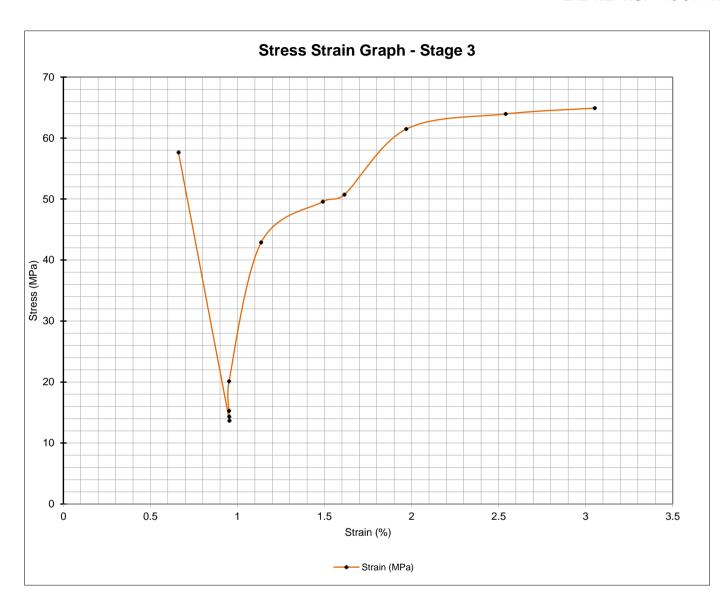
Mackay Laboratory



Confining Pressure (MPa)



Sheet 5 of 7 Mackay Laboratory



Sheet 6 of 7 Mackay Laboratory

Sheet 7 of 7 Mackay Laboratory

CLIENT REF:

TEST PROCEDURES:

CARDNO (QLD) PTY LTD 71 MAGGIOLO DRIVE MACKAY QLD TRIAXIAL PROPERTIES OF A ROCK

Sheet 1 of 7 Mackay Laboratory

CLIENT: Central Queenssland Coal JOB NO: M30863 LAB REF NO: 19-5451A

ADDRESS: Level 17, 240 Queen Street, Brisbane, QLD 4000

D7012-14 Method A; D4543

PROJECT: CQ Coal Styx Basin Geotechnical Investigation SAMPLED BY: Client DATE: 02-Sep-19
LOCATION: Styx Coal Mine TESTED BY: PM DATE: 07-Nov-19

MATERIAL: Siltstone CHECKED BY: DH DATE: 08-Nov-19

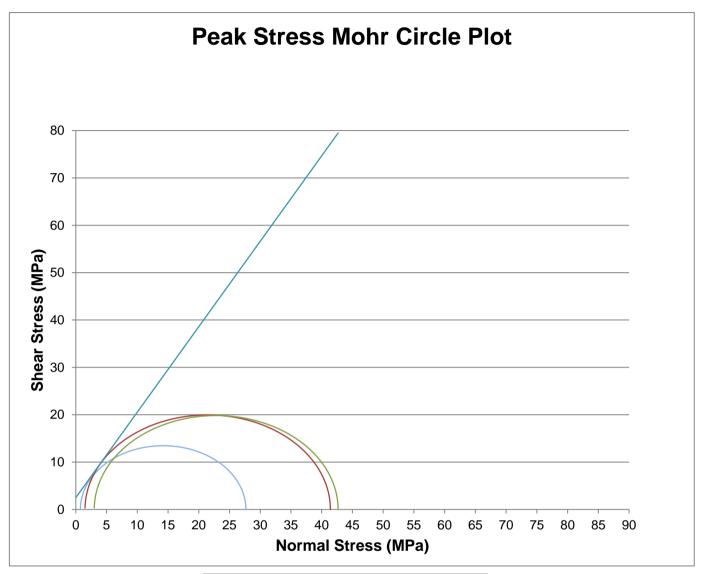
Sample Details Seam: -Borehole: STX1903G Sample number: UCS-129 Depth from (m): 146.03 Depth to (m): 146.20 Shimadzu UEH-50 Length (mm): 127.3 **Test Apparatus:** Diameter (mm): 61.0 Displacement Transducer Measurement: Moisture Content (%): 3.3 Rate of Loading 21.60 (MPa/min): Mass of Sample (g): 956.0 Time to Failure 3.40 Dry Density (t/m3): (min): 2.49 3.52 Wet Density (t/m3): Test Duration (min): 2.57

Intact Strength				
Confining Pressure (MPa) Maximum Principal Stress (MPa): Axial Strain (%)				
Stage 1	0.75	27.7	0.62	
Stage 2	1.5	41.4	0.87	
Stage 3	3	42.7	0.98	
Residual Strength				
Confining Pressure (MPa) Median Axial Stress (MPa)				
Residual Stress 1	3	29.0		
Residual Stress 2	1.5	22.5		
Residual Stress 3	0.75	15.9		
Residual Stress 4	0.5	11.5		
Residual Stress 5	0.25	8.6		

Dominant structural features with respect to core axis

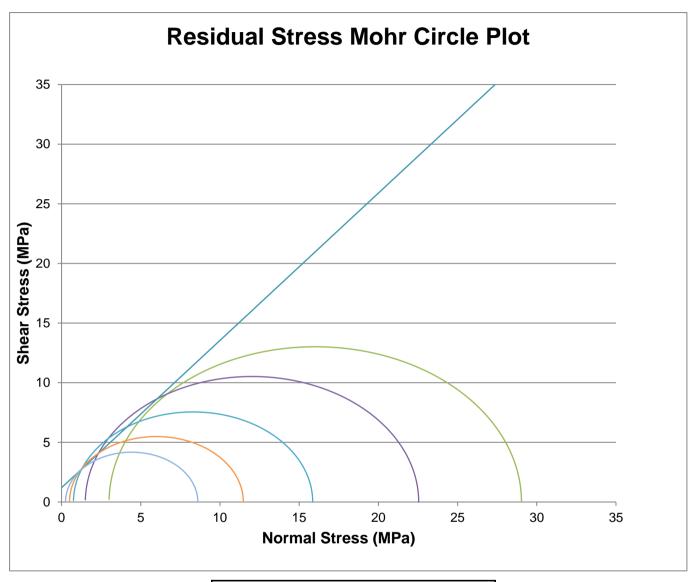
Before Photo	After Photo	Failure Diagram
		(c) Mixed mode

Comments: Testing was done at Room Temperature.

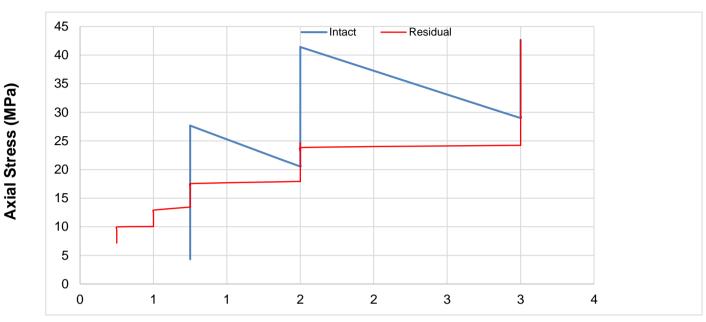

APPROVED SIGNATORY

Trudie Bradhury - Analy

Trudie Bradbury - Analyst NATA Accreditation Number 910 Mackay Laboratory

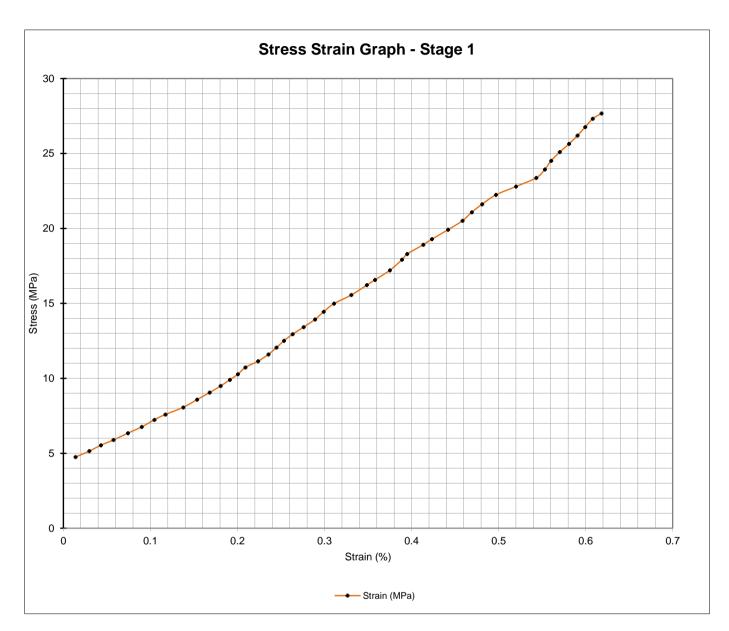

Sheet 2 of 7 Mackay Laboratory

Estimated Peak Envelope		
Angle 61.0 °		
Cohesion 2.5 MPa		
Notes:	Graph not to scale	
Lab Ref No.:	19-5451A	


Sheet 3 of 7 Mackay Laboratory

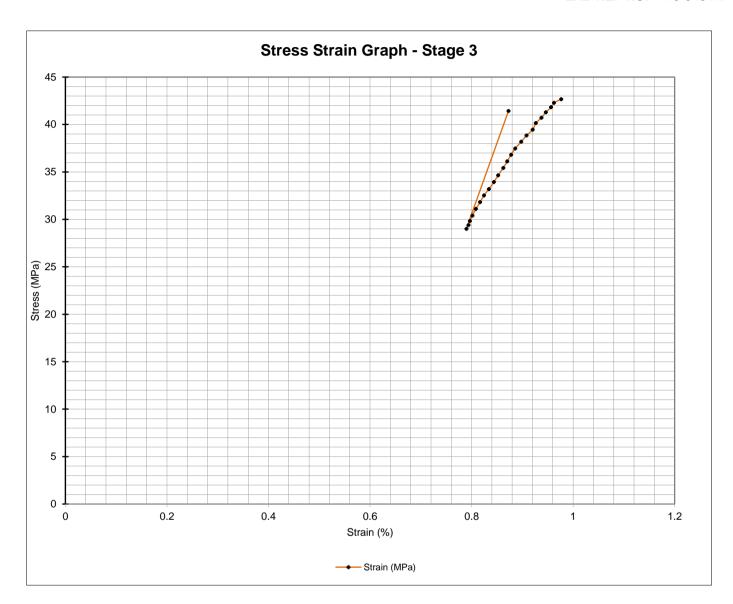
Estimated Residual Envelope		
Angle 51.0 °		
Cohesion 1.2 MPa		
Notes: Graph not to scale		
Lab Ref No.:	19-5451A	

Sheet 4 of 7 Mackay Laboratory





Sheet 5 of 7 Mackay Laboratory



Sheet 6 of 7 Mackay Laboratory

Sheet 7 of 7 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Consolidated Undrained Soil Triaxial Report

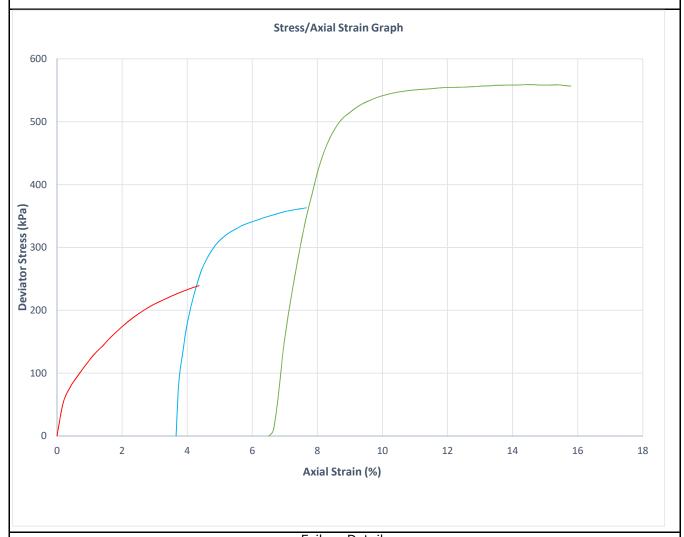
Client: Central Queensland Coal

Level 17, 240 Queen Street, Brisbane, Q Report Date:

Project Number: M30863

Address:

Project Name: CQ Coal Styx Basin Geotechnical Investi Test Method


Location: Borehole: STX1903G 1, Depth 11.48-11.63m

Report Number: 19-5324A Report Date: 2/12/2019

Client Number:

Method AS 1289.6.4.2

Page 2

	Failure Details								
Cell Pressure	Back	Effictive	Initial Pore	Initial Pore Failure Pore Principal Effective Stress		Deviator Stress Strain			
(kPa)	Pressure (kPa)	Pressure (kPa)	Pressure (kPa)	Pressure (kPa)	σ '1 (kPa)	σ '3 (kPa)	O '1/ O '3	(kPa)	(%)
500	400	100	392	422	317	78	4.067	239	4.36
500	300	200	292	335	528	165	3.201	363	7.66
800	400	400	397	496	863	304	2.839	559	14.53

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Consolidated Undrained Soil Triaxial Report

Client: Central Queensland Coal Report Numb
Address: Level 17, 240 Queen Street, Brisbane, Q Report Date:

Project Number: M30863

Project Name: CQ Coal Styx Basin Geotechnical Investi Test Method


Location: Borehole: STX1903G 1, Depth 11.48-11.63m

 Report Number:
 19-5324A

 Report Date:
 2/12/2019

Client Number: Test Method AS 1289.6.4.2

Page 3

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

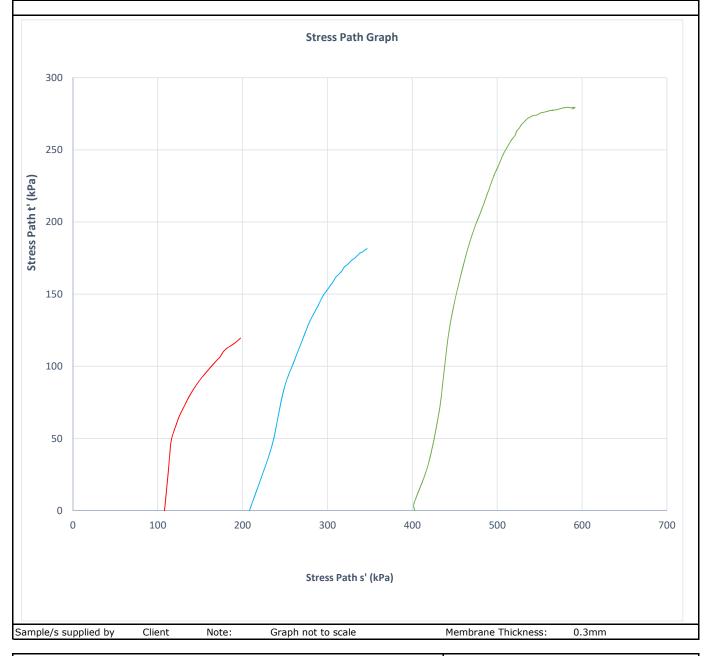
Consolidated Undrained Soil Triaxial Report

Client: Central Queensland Coal

Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Address:


Project Name: CQ Coal Styx Basin Geotechnical Investigation | Test Method

Location: Borehole: STX1903G 1, Depth 11.48-11.63m

Report Number: 19-5324A Report Date: 2/12/2019 Client Number: -

lient Number: est Method AS 1289.6.4.2

Page 4

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Consolidated Undrained Soil Triaxial Report

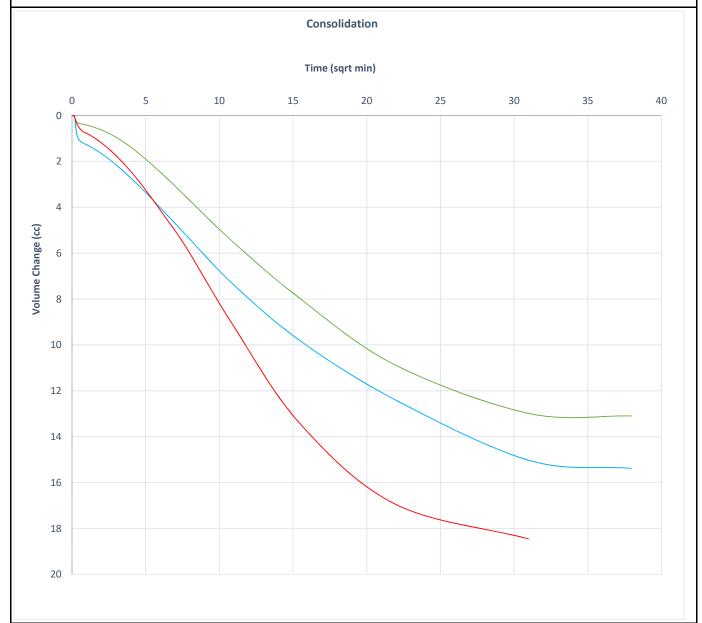
Client: Central Queensland Coal

Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Address:

Project Name: CQ Coal Styx Basin Geotechnical Investigation


Location: Borehole: STX1903G 1, Depth 11.48-11.63m

Report Number: 19-5324A Report Date: 2/12/2019

Client Number:

Test Method AS 1289.6.4.2

Page 5

Sample/s supplied by

Client

Note:

Graph not to scale

Membrane Thickness:

0.3mm

APPROVED SIGNATOR

WORLD RECOGNISED ACCREDITATION

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Derren Hoskins - Lab Manager NATA Accreditation Number

910 Mackay Laboratory

Document Code: GEO-QF-UNGR 18G

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740

Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

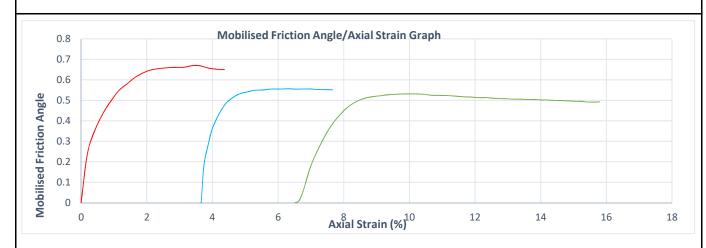
Consolidated Undrained Soil Triaxial Report

Client: Central Queensland Coal Address:

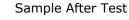
Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Project Name: CQ Coal Styx Basin Geotechnical Investigation


Location: Borehole: STX1903G 1, Depth 11.48-11.63m Report Number: Report Date:

19-5324A 2/12/2019


Client Number: Test Method

AS 1289.6.4.2

Page 6

Sample Before Test

Sample/s supplied by

Client

Graph not to scale

Membrane Thickness:

0.3mm

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

CARDNO (QLD) PTY LTD

71 MAGGIOLO DRIVE MACKAY QLD

REPORT ON DETERMINATION OF UNIAXIAL COMPRESSIVE STRENGTH ROCK STRENGTH LESS THAN 50 MPa

Mackay Laboratory Sheet 1 of 1 CLIENT: Central Queensland Coal JOB NO.: M30863 LAB REF NO: 19-5331A ADDRESS: Level 17, 240 Queen Street, Brisbane Qld 4000 PROJECT: CQ Coal Styx Basin Geotechnical Investigation SAMPLED BY: Cardno **SAMPLE DATE:** 02-Sep-19 LOCATION: Styx Basin **TEST DATE: TESTED BY:** 25-Oct-19 MS **TEST PROCEDURES:** AS 4133.1.1.1; 4.2.2 (2013) **CHECKED BY: CHECK DATE:** ΑW 28-Oct-19

Borehole No.	STX1903G	
Client sample number		ucs-9
Corrected Depth from (m)		27.3
Corrected Depth to (m)		27.47
Stratigraphic horizon		-
Orientation of core axis		Vertical
Lithological description		sandstone
Mass of sample (g)		1059.2
Average sample diameter (mn	n)	60.6
Diameter variation > 0.3mm?		No
Average height (mm)		156.3
Length / Diameter ratio (ratio 2	2.5 to 3)	2.6
Cross sectional area (mm²)		2884
Uniaxial Comp. Strength (MPa	a)	6.4
Number of specimens in samp	ole	1
Moisture content (%)		4.3
Density at as received moistur	2.35	
Loading rate (N/min)	2500	
Time to failure (min)		7.32
Max. applied load (kN)		18.5
Dominant structural features	Before	After
with respect to core axis		
		W. 60
(e) Tensile		
dominated		
Secant Young's Modulus (GPa	N/A	
Corrected Poisson's Ratio Remarks	N/A	
Remarks		
<u> </u>		

Storage History of Drilled by client, sampled by Cardno, wrapped and sealed, transported to Mackay laboratory.

specimens: Stored at room temperature and humidity and tested at as received moisture content.

Compression machine: Shimadzu U.E.H. -50 S/N 79097

Variations from standard: Time to failure less than standard 10 to 15 minutes.

Young's Modulus method: N/A Poisson's Ratio method: N/A

 Accredited No.
 910

 Certificate No.
 19-5331A

 Date of Issue
 28-Oct-19

Accredited for compliance with ISO/IEC 17025-testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australia/national standards.

CARDNO (QLD) PTY LTD

71 MAGGIOLO DRIVE MACKAY QLD

REPORT ON DETERMINATION OF UNIAXIAL COMPRESSIVE STRENGTH ROCK STRENGTH LESS THAN 50 MPa

Mackay Laboratory Sheet 1 of 1 CLIENT: Central Queensland Coal JOB NO.: M30863 LAB REF NO: 19-5335A ADDRESS: Level 17, 240 Queen Street, Brisbane Qld 4000 PROJECT: CQ Coal Styx Basin Geotechnical Investigation SAMPLED BY: Cardno **SAMPLE DATE:** 02-Sep-19 LOCATION: Styx Basin **TEST DATE: TESTED BY:** 25-Oct-19 MS **TEST PROCEDURES:** AS 4133.1.1.1; 4.2.2 (2013) **CHECKED BY: CHECK DATE:** ΑW 28-Oct-19

Borehole No.	STX1903G	
Client sample number		ucs-13
Corrected Depth from (m)		29.34
Corrected Depth to (m)		29.55
Stratigraphic horizon		-
Orientation of core axis		Vertical
Lithological description		sandstone
Mass of sample (g)		1093.1
Average sample diameter (mn	n)	60.8
Diameter variation > 0.3mm?		No
Average height (mm)		159.1
Length / Diameter ratio (ratio 2	2.5 to 3)	2.6
Cross sectional area (mm²)		2903
Uniaxial Comp. Strength (MPa	1)	3.8
Number of specimens in samp	ole	1
Moisture content (%)		4.5
Density at as received moistur	re content (t/m ³)	2.37
Loading rate (N/min)		1250
Time to failure (min)		7.53
Max. applied load (kN)		11.0
Dominant structural features	Before	After
with respect to core axis		
		4 4
	0	
	3	
(e) Tensile dominated	H	
Secant Young's Modulus (GPa	N/A	
Corrected Poisson's Ratio	N/A	
Remarks		

Storage History of Drilled by client, sampled by Cardno, wrapped and sealed, transported to Mackay laboratory.

specimens: Stored at room temperature and humidity and tested at as received moisture content.

Compression machine: Shimadzu U.E.H. -50 S/N 79097

Variations from standard: Time to failure less than standard 10 to 15 minutes.

Young's Modulus method: N/A Poisson's Ratio method: N/A

Accredited No.
Certificate No.
Date of Issue

910 19-5335A 28-Oct-19

Accredited for compliance with ISO/IEC 17025-testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australia/national standards.

CARDNO (QLD) PTY LTD

71 MAGGIOLO DRIVE MACKAY QLD

REPORT ON DETERMINATION OF UNIAXIAL COMPRESSIVE STRENGTH ROCK STRENGTH LESS THAN 50 MPa

Mackay Laboratory Sheet 1 of 1 CLIENT: Central Queensland Coal JOB NO.: M30863 LAB REF NO: 19-5346A ADDRESS: Level 17, 240 Queen Street, Brisbane Qld 4000 PROJECT: CQ Coal Styx Basin Geotechnical Investigation SAMPLED BY: Cardno **SAMPLE DATE:** 02-Sep-19 LOCATION: Styx Basin **TEST DATE: TESTED BY:** 22-Oct-19 MS **TEST PROCEDURES:** AS 4133.1.1.1; 4.2.2 (2013) **CHECKED BY: CHECK DATE:** ΑW 24-Oct-19

Borehole No.	STX1903G	
Client sample number		ucs-24
Corrected Depth from (m)		35.63
Corrected Depth to (m)		35.81
Stratigraphic horizon		-
Orientation of core axis		Vertical
Lithological description		sandstone
Mass of sample (g)		1107.7
Average sample diameter (mn	n)	60.9
Diameter variation > 0.3mm?		No
Average height (mm)		157.9
Length / Diameter ratio (ratio 2	2.5 to 3)	2.6
Cross sectional area (mm²)		2913
Uniaxial Comp. Strength (MPa	1)	7.2
Number of specimens in samp	ole	1
Moisture content (%)		4.4
Density at as received moistur	2.41	
Loading rate (N/min)		2500
Time to failure (min)		8.30
Max. applied load (kN)		21.0
Dominant structural features	Before	After
with respect to core axis		
		Ato.
	Part of the last o	
(e) Tensile dominated		
Secant Young's Modulus (GPa	N/A	
Corrected Poisson's Ratio	N/A	
Remarks		

Storage History of Drilled by client, sampled by Cardno, wrapped and sealed, transported to Mackay laboratory.

specimens: Stored at room temperature and humidity and tested at as received moisture content.

Compression machine: Shimadzu U.E.H. -50 S/N 79097

Variations from standard: Time to failure less than standard 10 to 15 minutes.

Young's Modulus method: N/A Poisson's Ratio method: N/A

Accredited No.
Certificate No.
Date of Issue

19-5346A 24-Oct-19

910

Accredited for compliance with ISO/IEC 17025-testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australia/national standards.

71 MAGGIOLO DRIVE MACKAY QLD

REPORT ON DETERMINATION OF UNIAXIAL COMPRESSIVE STRENGTH ROCK STRENGTH LESS THAN 50 MPa

Mackay Laboratory Sheet 1 of 1 CLIENT: Central Queensland Coal JOB NO.: M30863 LAB REF NO: 19-5348A ADDRESS: Level 17, 240 Queen Street, Brisbane Qld 4000 PROJECT: CQ Coal Styx Basin Geotechnical Investigation SAMPLED BY: Cardno **SAMPLE DATE:** 02-Sep-19 LOCATION: Styx Basin **TEST DATE: TESTED BY:** 22-Oct-19 MS **TEST PROCEDURES:** AS 4133.1.1.1; 4.2.2 (2013) **CHECKED BY: CHECK DATE:** ΑW 24-Oct-19

Borehole No.		STX1903G
Client sample number		ucs-26
Corrected Depth from (m)		36.4
Corrected Depth to (m)		36.59
Stratigraphic horizon		-
Orientation of core axis		Vertical
Lithological description		sandstone
Mass of sample (g)		1087.8
Average sample diameter (mn	n)	60.8
Diameter variation > 0.3mm?		No
Average height (mm)		157
Length / Diameter ratio (ratio 2	2.5 to 3)	2.6
Cross sectional area (mm²)		2903
Uniaxial Comp. Strength (MPa	1)	5.2
Number of specimens in samp	ole	1
Moisture content (%)		4.6
Density at as received moisture content (t/m³)		2.39
Loading rate (N/min)		2500
Time to failure (min)		6.01
Max. applied load (kN)		15.0
Dominant structural features	Before	After
with respect to core axis		
	1000	
	100000	
		100
(e) Tensile dominated	S. C.	
Secant Young's Modulus (GPa	a)	N/A
Corrected Poisson's Ratio		N/A
Remarks		

Storage History of Drilled by client, sampled by Cardno, wrapped and sealed, transported to Mackay laboratory.

specimens: Stored at room temperature and humidity and tested at as received moisture content.

Compression machine: Shimadzu U.E.H. -50 S/N 79097

Variations from standard: Time to failure less than standard 10 to 15 minutes.

Young's Modulus method: N/A Poisson's Ratio method: N/A

Accredited No. Certificate No. Date of Issue

910 19-5348A 24-Oct-19

71 MAGGIOLO DRIVE MACKAY QLD

REPORT ON DETERMINATION OF UNIAXIAL COMPRESSIVE STRENGTH ROCK STRENGTH LESS THAN 50 MPa

Mackay Laboratory Sheet 1 of 1 CLIENT: Central Queensland Coal JOB NO.: M30863 LAB REF NO: 19-5352A ADDRESS: Level 17, 240 Queen Street, Brisbane Qld 4000 PROJECT: CQ Coal Styx Basin Geotechnical Investigation SAMPLED BY: Cardno **SAMPLE DATE:** 02-Sep-19 LOCATION: Styx Basin **TESTED BY: TEST DATE:** MS 22-Oct-19 **TEST PROCEDURES: CHECKED BY: CHECK DATE:** AS 4133.1.1.1; 4.2.2 (2013) ΑW 24-Oct-19

Borehole No.		STX1903G
Client sample number		ucs-30
Corrected Depth from (m)		38.56
Corrected Depth to (m)		38.73
Stratigraphic horizon		•
Orientation of core axis		Vertical
Lithological description		sandstone
Mass of sample (g)		1181.6
Average sample diameter (mn	n)	60.9
Diameter variation > 0.3mm?		No
Average height (mm)		159.6
Length / Diameter ratio (ratio 2	2.5 to 3)	2.6
Cross sectional area (mm²)		2913
Uniaxial Comp. Strength (MPa	1)	6.4
Number of specimens in samp	ole	1
Moisture content (%)		3.3
Density at as received moisture content (t/m³)		2.54
Loading rate (N/min)		2500
Time to failure (min)		7.29
Max. applied load (kN)		18.5
Dominant structural features	Before	After
with respect to core axis		
(e) Tensile dominated		
Secant Young's Modulus (GPa	a)	N/A
Corrected Poisson's Ratio		N/A
Remarks		

Storage History of Drilled by client, sampled by Cardno, wrapped and sealed, transported to Mackay laboratory.

specimens: Stored at room temperature and humidity and tested at as received moisture content.

Compression machine: Shimadzu U.E.H. -50 S/N 79097

Variations from standard: Time to failure less than standard 10 to 15 minutes.

Had a natural crack along a lamination that was glued prior to test.

Young's Modulus method: N/A Poisson's Ratio method: N/A

Accredited No.
Certificate No.
Date of Issue

19-5352A 24-Oct-19

910

71 MAGGIOLO DRIVE MACKAY QLD

REPORT ON DETERMINATION OF UNIAXIAL COMPRESSIVE STRENGTH ROCK STRENGTH LESS THAN 50 MPa

Mackay Laboratory Sheet 1 of 1 CLIENT: Central Queensland Coal JOB NO.: M30863 LAB REF NO: 19-5359A ADDRESS: Level 17, 240 Queen Street, Brisbane Qld 4000 PROJECT: CQ Coal Styx Basin Geotechnical Investigation SAMPLED BY: Cardno **SAMPLE DATE:** 02-Sep-19 LOCATION: Styx Basin **TEST DATE: TESTED BY:** 22-Oct-19 MS **TEST PROCEDURES:** AS 4133.1.1.1; 4.2.2 (2013) **CHECKED BY: CHECK DATE:** ΑW 24-Oct-19

Borehole No.		STX1903G
Client sample number		ucs-37
Corrected Depth from (m)		43.01
Corrected Depth to (m)		43.16
Stratigraphic horizon		•
Orientation of core axis		Vertical
Lithological description		siltstone / tuff
Mass of sample (g)		1416.7
Average sample diameter (mm	n)	61
Diameter variation > 0.3mm?		No
Average height (mm)		153.7
Length / Diameter ratio (ratio 2	2.5 to 3)	2.5
Cross sectional area (mm²)		2919
Uniaxial Comp. Strength (MPa	1)	25.7
Number of specimens in samp	ole	1
Moisture content (%)		0.2
Density at as received moisture content (t/m³)		3.16
Loading rate (N/min)		12500
Time to failure (min)		5.58
Max. applied load (kN)		75.0
Dominant structural features	Before	After
with respect to core axis		
		-
	4 5 3 5	
	-	
2	100000	1
(e) Tensile dominated		
Secant Young's Modulus (GPa	a)	N/A
Corrected Poisson's Ratio		N/A
Remarks		

Storage History of Drilled by client, sampled by Cardno, wrapped and sealed, transported to Mackay laboratory.

specimens: Stored at room temperature and humidity and tested at as received moisture content.

Compression machine: Shimadzu U.E.H. -50 S/N 79097

Variations from standard: Time to failure less than standard 10 to 15 minutes.

Young's Modulus method: N/A Poisson's Ratio method: N/A

Accredited No. Certificate No. Date of Issue 910 19-5359A 24-Oct-19

71 MAGGIOLO DRIVE MACKAY QLD

REPORT ON DETERMINATION OF UNIAXIAL COMPRESSIVE STRENGTH ROCK STRENGTH LESS THAN 50 MPa

Mackay Laboratory Sheet 1 of 1 CLIENT: Central Queensland Coal JOB NO.: M30863 LAB REF NO: 19-5364A ADDRESS: Level 17, 240 Queen Street, Brisbane Qld 4000 PROJECT: CQ Coal Styx Basin Geotechnical Investigation SAMPLED BY: Cardno **SAMPLE DATE:** 02-Sep-19 LOCATION: Styx Basin **TESTED BY: TEST DATE:** 22-Oct-19 MS **TEST PROCEDURES: CHECKED BY: CHECK DATE:** AS 4133.1.1.1; 4.2.2 (2013) ΑW 24-Oct-19

Borehole No.		STX1903G
Client sample number		ucs-42
Corrected Depth from (m)		47.8
Corrected Depth to (m)		48.01
Stratigraphic horizon		-
Orientation of core axis		Vertical
Lithological description		sandstone
Mass of sample (g)		1172.4
Average sample diameter (mn	า)	61
Diameter variation > 0.3mm?		No
Average height (mm)		161.9
Length / Diameter ratio (ratio 2	2.5 to 3)	2.7
Cross sectional area (mm ²)		2922
Uniaxial Comp. Strength (MPa	1)	13.2
Number of specimens in samp	ole	1
Moisture content (%)		2.6
Density at as received moisture content (t/m³)		2.48
Loading rate (N/min)		5000
Time to failure (min)		7.46
Max. applied load (kN)		38.5
Dominant structural features	Before	After
with respect to core axis		
(e) Tensile		
Secant Young's Modulus (GPa	4)	N/A
Corrected Poisson's Ratio		N/A
Remarks		

Storage History of Drilled by client, sampled by Cardno, wrapped and sealed, transported to Mackay laboratory.

specimens: Stored at room temperature and humidity and tested at as received moisture content.

Compression machine: Shimadzu U.E.H. -50 S/N 79097

Variations from standard: Time to failure less than standard 10 to 15 minutes.

Had a natural crack along a lamination that was glued prior to test.

Young's Modulus method: N/A Poisson's Ratio method: N/A

Accredited No.
Certificate No.
Date of Issue

910 19-5364A 24-Oct-19

71 MAGGIOLO DRIVE MACKAY QLD

REPORT ON DETERMINATION OF UNIAXIAL COMPRESSIVE STRENGTH ROCK STRENGTH LESS THAN 50 MPa

Mackay Laboratory Sheet 1 of 1 CLIENT: Central Queensland Coal JOB NO.: M30863 LAB REF NO: 19-5366A ADDRESS: Level 17, 240 Queen Street, Brisbane Qld 4000 PROJECT: CQ Coal Styx Basin Geotechnical Investigation SAMPLED BY: Cardno **SAMPLE DATE:** 02-Sep-19 LOCATION: Styx Basin **TEST DATE: TESTED BY:** 22-Oct-19 MS **TEST PROCEDURES:** AS 4133.1.1.1; 4.2.2 (2013) **CHECKED BY: CHECK DATE:** ΑW 24-Oct-19

Borehole No.		STX1903G
Client sample number		ucs-44
Corrected Depth from (m)		48.8
Corrected Depth to (m)		48.96
Stratigraphic horizon		-
Orientation of core axis		Vertical
Lithological description		sandstone
Mass of sample (g)		1098.5
Average sample diameter (mn	n)	60.9
Diameter variation > 0.3mm?		No
Average height (mm)		156
Length / Diameter ratio (ratio 2	2.5 to 3)	2.6
Cross sectional area (mm²)		2913
Uniaxial Comp. Strength (MPa	1)	8.6
Number of specimens in samp	ole	1
Moisture content (%)		3.2
Density at as received moisture content (t/m³)		2.42
Loading rate (N/min)		5000
Time to failure (min)		5.03
Max. applied load (kN)		25.0
Dominant structural features	Before	After
with respect to core axis		Also I
	1000	
	200	
	-	
	- Personal Property of the Personal Property o	700
(e) Tensile dominated	R	F
Secant Young's Modulus (GPa	a)	N/A
Corrected Poisson's Ratio		N/A
Remarks		

Storage History of Drilled by client, sampled by Cardno, wrapped and sealed, transported to Mackay laboratory.

specimens: Stored at room temperature and humidity and tested at as received moisture content.

Compression machine: Shimadzu U.E.H. -50 S/N 79097

Variations from standard: Time to failure less than standard 10 to 15 minutes.

Young's Modulus method: N/A Poisson's Ratio method: N/A

Accredited No. Certificate No. Date of Issue 910 19-5366A 24-Oct-19

71 MAGGIOLO DRIVE MACKAY QLD

REPORT ON DETERMINATION OF UNIAXIAL COMPRESSIVE STRENGTH ROCK STRENGTH LESS THAN 50 MPa

Mackay Laboratory Sheet 1 of 1 CLIENT: Central Queensland Coal JOB NO.: M30863 LAB REF NO: 19-5374A ADDRESS: Level 17, 240 Queen Street, Brisbane Qld 4000 PROJECT: CQ Coal Styx Basin Geotechnical Investigation SAMPLED BY: Cardno SAMPLE DATE: 02-Sep-19 LOCATION: Styx Basin **TEST DATE: TESTED BY:** 22-Oct-19 MS **TEST PROCEDURES:** AS 4133.1.1.1; 4.2.2 (2013) **CHECKED BY: CHECK DATE:** AW24-Oct-19

Borehole No.		STX1903G
Client sample number		ucs-52
Corrected Depth from (m)		51.6
Corrected Depth to (m)		51.86
Stratigraphic horizon		-
Orientation of core axis		Vertical
Lithological description		coal
Mass of sample (g)		625.1
Average sample diameter (mm)		61
Diameter variation > 0.3mm?		No
Average height (mm)		157.5
Length / Diameter ratio (ratio 2.5 t	o 3)	2.6
Cross sectional area (mm²)		2922
Uniaxial Comp. Strength (MPa)		5.6
Number of specimens in sample		1
Moisture content (%)		3
Density at as received moisture content (t/m³)		1.36
Loading rate (N/min)		2500
Time to failure (min)		6.41
Max. applied load (kN)		16.5
Dominant structural features	Before	After
with respect to core axis		
(d) Tensile dominated		
Secant Young's Modulus (GPa)		N/A
Corrected Poisson's Ratio		N/A
Remarks	•	

Storage History of Drilled by client, sampled by Cardno, wrapped and sealed, transported to Mackay laboratory.

specimens: Stored at room temperature and humidity and tested at as received moisture content.

Compression machine: Shimadzu U.E.H. -50 S/N 79097

Variations from standard: Time to failure less than standard 10 to 15 minutes.

Young's Modulus method: N/A Poisson's Ratio method: N/A

Accredited No. Certificate No. Date of Issue

910 19-5374A 24-Oct-19

71 MAGGIOLO DRIVE MACKAY QLD

REPORT ON DETERMINATION OF UNIAXIAL COMPRESSIVE STRENGTH ROCK STRENGTH LESS THAN 50 MPa

Mackay Laboratory Sheet 1 of 1 CLIENT: Central Queensland Coal JOB NO.: M30863 LAB REF NO: 19-5379A ADDRESS: Level 17, 240 Queen Street, Brisbane Qld 4000 PROJECT: CQ Coal Styx Basin Geotechnical Investigation SAMPLED BY: Cardno **SAMPLE DATE:** 02-Sep-19 LOCATION: Styx Basin **TEST DATE: TESTED BY:** 22-Oct-19 MS **TEST PROCEDURES:** AS 4133.1.1.1; 4.2.2 (2013) **CHECKED BY: CHECK DATE:** ΑW 24-Oct-19

Borehole No.		STX1903G
Client sample number		ucs-57
Corrected Depth from (m)		57.04
Corrected Depth to (m)		57.27
Stratigraphic horizon		-
Orientation of core axis		Vertical
Lithological description		sandstone
Mass of sample (g)		1167.1
Average sample diameter (mn	າ)	61
Diameter variation > 0.3mm?		No
Average height (mm)		159.2
Length / Diameter ratio (ratio 2	2.5 to 3)	2.6
Cross sectional area (mm ²)		2922
Uniaxial Comp. Strength (MPa	1)	8.7
Number of specimens in samp	ole	1
Moisture content (%)		1.9
Density at as received moisture content (t/m³)		2.51
Loading rate (N/min)		5000
Time to failure (min)		5.02
Max. applied load (kN)		25.5
Dominant structural features	Before	After
with respect to core axis	600	
(d) Tensile	5	
dominated		NIA
Secant Young's Modulus (GPa)		N/A N/A
Corrected Poisson's Ratio Remarks		N/A
T COTTAINS		

Storage History of Drilled by client, sampled by Cardno, wrapped and sealed, transported to Mackay laboratory.

specimens: Stored at room temperature and humidity and tested at as received moisture content.

Compression machine: Shimadzu U.E.H. -50 S/N 79097

Variations from standard: Time to failure less than standard 10 to 15 minutes.

Young's Modulus method: N/A Poisson's Ratio method: N/A

Accredited No. Certificate No. Date of Issue 910 19-5379A 24-Oct-19

71 MAGGIOLO DRIVE MACKAY QLD

REPORT ON DETERMINATION OF UNIAXIAL COMPRESSIVE STRENGTH ROCK STRENGTH LESS THAN 50 MPa

Mackay Laboratory Sheet 1 of 1 CLIENT: Central Queensland Coal JOB NO.: M30863 LAB REF NO: 19-5380A ADDRESS: Level 17, 240 Queen Street, Brisbane Qld 4000 PROJECT: CQ Coal Styx Basin Geotechnical Investigation SAMPLED BY: Cardno **SAMPLE DATE:** 02-Sep-19 LOCATION: Styx Basin **TEST DATE: TESTED BY:** 22-Oct-19 MS **TEST PROCEDURES: CHECKED BY: CHECK DATE:** AS 4133.1.1.1; 4.2.2 (2013) ΑW 24-Oct-19

Borehole No.		STX1903G
Client sample number		ucs-58
Corrected Depth from (m)		58.22
Corrected Depth to (m)		58.4
Stratigraphic horizon		-
Orientation of core axis		Vertical
Lithological description		interbeddefd
		carbonaceous
		siltstone/ coal
Mass of sample (g)		1051.6
Average sample diameter (mm	n)	60.9
Diameter variation > 0.3mm?		No
Average height (mm)		156.9
Length / Diameter ratio (ratio 2	2.5 to 3)	2.6
Cross sectional area (mm²)		2913
Uniaxial Comp. Strength (MPa)		5.8
Number of specimens in samp	ole	1
Moisture content (%)		3.4
Density at as received moisture content (t/m³)		2.30
Loading rate (N/min)		2500
Time to failure (min)		6.53
Max. applied load (kN)		17.0
Dominant structural features	Before	After
with respect to core axis		
	176	
		20.39
	是某些人	
(e) Tensile dominated	THE REAL PROPERTY.	
Secant Young's Modulus (GPa	a)	N/A
Corrected Poisson's Ratio		N/A
Remarks		

Storage History of Drilled by client, sampled by Cardno, wrapped and sealed, transported to Mackay laboratory.

specimens: Stored at room temperature and humidity and tested at as received moisture content.

Compression machine: Shimadzu U.E.H. -50 S/N 79097

Variations from standard: Time to failure less than standard 10 to 15 minutes.

Young's Modulus method: N/A Poisson's Ratio method: N/A

Accredited No. Certificate No. Date of Issue 910 19-5380A 24-Oct-19

71 MAGGIOLO DRIVE MACKAY QLD

REPORT ON DETERMINATION OF UNIAXIAL COMPRESSIVE STRENGTH ROCK STRENGTH LESS THAN 50 MPa

Mackay Laboratory Sheet 1 of 1 CLIENT: Central Queensland Coal JOB NO.: M30863 LAB REF NO: 19-5396A ADDRESS: Level 17, 240 Queen Street, Brisbane Qld 4000 PROJECT: CQ Coal Styx Basin Geotechnical Investigation SAMPLED BY: Cardno **SAMPLE DATE:** 02-Sep-19 LOCATION: Styx Basin **TEST DATE: TESTED BY:** MS 22-Oct-19 **TEST PROCEDURES: CHECKED BY: CHECK DATE:** AS 4133.1.1.1; 4.2.2 (2013) ΑW 24-Oct-19

Borehole No.	STX1903G
Client sample number	ucs-74
Corrected Depth from (m)	69.88
Corrected Depth to (m)	70.05
Stratigraphic horizon	-
Orientation of core axis	Vertical
Lithological description	carbonaceous
	siltstone
Mass of sample (g)	1092.2
Average sample diameter (mm)	61
Diameter variation > 0.3mm?	No
Average height (mm)	159.9
Length / Diameter ratio (ratio 2.5 to 3)	2.6
Cross sectional area (mm²)	2922
Uniaxial Comp. Strength (MPa)	2.2
Number of specimens in sample	1
Moisture content (%)	3.1
Density at as received moisture conten	t (t/m ³) 2.34
Loading rate (N/min)	1250
Time to failure (min)	5.20
Max. applied load (kN)	6.5
	fore After
with respect to core axis	
(e) Tensile dominated	3
Secant Young's Modulus (GPa)	N/A
Corrected Poisson's Ratio	N/A
Remarks	

Storage History of Drilled by client, sampled by Cardno, wrapped and sealed, transported to Mackay laboratory.

specimens: Stored at room temperature and humidity and tested at as received moisture content.

Compression machine: Shimadzu U.E.H. -50 S/N 79097

Variations from standard: Time to failure less than standard 10 to 15 minutes.

Young's Modulus method: N/A Poisson's Ratio method: N/A

Accredited No. Certificate No. Date of Issue 910 19-5396A 24-Oct-19

71 MAGGIOLO DRIVE MACKAY QLD

REPORT ON DETERMINATION OF UNIAXIAL COMPRESSIVE STRENGTH ROCK STRENGTH LESS THAN 50 MPa

Mackay Laboratory Sheet 1 of 1 CLIENT: Central Queensland Coal JOB NO.: M30863 LAB REF NO: 19-5405A ADDRESS: Level 17, 240 Queen Street, Brisbane Qld 4000 PROJECT: CQ Coal Styx Basin Geotechnical Investigation SAMPLED BY: Cardno **SAMPLE DATE:** 02-Sep-19 LOCATION: Styx Basin **TEST DATE: TESTED BY:** 22-Oct-19 MS **TEST PROCEDURES:** AS 4133.1.1.1; 4.2.2 (2013) **CHECKED BY: CHECK DATE:** ΑW 24-Oct-19

Borehole No.		STX1903G
Client sample number		ucs-83
Corrected Depth from (m)		78.07
Corrected Depth to (m)		78.27
Stratigraphic horizon		-
Orientation of core axis		Vertical
Lithological description		carbonaceous
		siltstone
Mass of sample (g)		1113.7
Average sample diameter (mn	n)	60.9
Diameter variation > 0.3mm?	,	No
Average height (mm)		160.3
Length / Diameter ratio (ratio 2	2.5 to 3)	2.6
Cross sectional area (mm²)	2.0 10 0)	2913
Uniaxial Comp. Strength (MPa)		13.7
Number of specimens in samp		1
Moisture content (%)	7.0	2.9
Density at as received moisture content (t/m³)		2.39
Loading rate (N/min)		5000
Time to failure (min)		8.03
Max. applied load (kN)		40.0
Dominant structural features	Before	After
with respect to core axis	Doloic	7 (1.0)
	420	
	20.00	
	128	100
(e) Tensile		4
dominated		
Secant Young's Modulus (GPa)		N/A
Corrected Poisson's Ratio		N/A
Remarks		

Storage History of Drilled by client, sampled by Cardno, wrapped and sealed, transported to Mackay laboratory.

specimens: Stored at room temperature and humidity and tested at as received moisture content.

Compression machine: Shimadzu U.E.H. -50 S/N 79097

Variations from standard: Time to failure less than standard 10 to 15 minutes.

Young's Modulus method: N/A Poisson's Ratio method: N/A

Accredited No. Certificate No. Date of Issue 910 19-5405A 24-Oct-19

71 MAGGIOLO DRIVE MACKAY QLD

REPORT ON DETERMINATION OF UNIAXIAL COMPRESSIVE STRENGTH ROCK STRENGTH LESS THAN 50 MPa

Mackay Laboratory Sheet 1 of 1 CLIENT: Central Queensland Coal JOB NO.: M30863 LAB REF NO: 19-5410A ADDRESS: Level 17, 240 Queen Street, Brisbane Qld 4000 PROJECT: CQ Coal Styx Basin Geotechnical Investigation SAMPLED BY: Cardno **SAMPLE DATE:** 02-Sep-19 LOCATION: Styx Basin **TESTED BY: TEST DATE:** 22-Oct-19 MS **TEST PROCEDURES: CHECKED BY: CHECK DATE:** AS 4133.1.1.1; 4.2.2 (2013) ΑW 24-Oct-19

Borehole No.	STX1903G
Client sample number	ucs-88
Corrected Depth from (m)	80.22
Corrected Depth to (m)	80.37
Stratigraphic horizon	-
Orientation of core axis	Vertical
Lithological description	interbeddefd
	carbonaceous
	siltstone/ coal
Mass of sample (g)	628.2
Average sample diameter (mm)	61.1
Diameter variation > 0.3mm?	No
Average height (mm)	149.2
Length / Diameter ratio (ratio 2.5 to 3)	2.4
Cross sectional area (mm²)	2929
Uniaxial Comp. Strength (MPa)	6.5
Number of specimens in sample	1
Moisture content (%)	4.1
Density at as received moisture content (t/m³)	1.44
Loading rate (N/min)	2500
Time to failure (min)	7.41
Max. applied load (kN)	19.0
Dominant structural features Before	After
with respect to core axis	
(d) Tensile dominated	
Secant Young's Modulus (GPa)	N/A
Corrected Poisson's Ratio	N/A
Remarks	

Storage History of Drilled by client, sampled by Cardno, wrapped and sealed, transported to Mackay laboratory.

specimens: Stored at room temperature and humidity and tested at as received moisture content.

Compression machine: Shimadzu U.E.H. -50 S/N 79097

Variations from standard: Time to failure less than standard 10 to 15 minutes.

Height to diameter ratio less than 2.5 due to core structural features.

Young's Modulus method: N/A Poisson's Ratio method: N/A

Accredited No.
Certificate No.
Date of Issue

910 19-5410A 24-Oct-19

71 MAGGIOLO DRIVE MACKAY QLD

REPORT ON DETERMINATION OF UNIAXIAL COMPRESSIVE STRENGTH ROCK STRENGTH LESS THAN 50 MPa

Mackay Laboratory Sheet 1 of 1 CLIENT: Central Queensland Coal JOB NO.: M30863 LAB REF NO: 19-5412A ADDRESS: Level 17, 240 Queen Street, Brisbane Qld 4000 PROJECT: CQ Coal Styx Basin Geotechnical Investigation SAMPLED BY: Cardno **SAMPLE DATE:** 02-Sep-19 LOCATION: Styx Basin **TESTED BY: TEST DATE:** MS 22-Oct-19 **TEST PROCEDURES: CHECKED BY: CHECK DATE:** AS 4133.1.1.1; 4.2.2 (2013) ΑW 24-Oct-19

Borehole No.	STX1903G
Client sample number	ucs-90
Corrected Depth from (m)	81.9
Corrected Depth to (m)	82.08
Stratigraphic horizon	-
Orientation of core axis	Vertical
Lithological description	carbonaceous siltstone
Mass of sample (g)	905.5
Average sample diameter (mm)	60.9
Diameter variation > 0.3mm?	No
Average height (mm)	133.8
Length / Diameter ratio (ratio 2.5 to 3)	2.2
Cross sectional area (mm²)	2913
Uniaxial Comp. Strength (MPa)	6.9
Number of specimens in sample	1
Moisture content (%)	3.5
Density at as received moisture content (t/m³)	2.32
Loading rate (N/min)	2500
Time to failure (min)	7.59
Max. applied load (kN)	20.0
Dominant structural features Before	After
with respect to core axis (e) Tensile deminated	
Secant Young's Modulus (GPa)	N/A
Corrected Poisson's Ratio	N/A
Remarks	

Storage History of Drilled by client, sampled by Cardno, wrapped and sealed, transported to Mackay laboratory.

specimens: Stored at room temperature and humidity and tested at as received moisture content.

Compression machine: Shimadzu U.E.H. -50 S/N 79097

Variations from standard: Time to failure less than standard 10 to 15 minutes.

Height to diameter ratio less than 2.5 due to core structural features.

Young's Modulus method: N/A Poisson's Ratio method: N/A

Accredited No.
Certificate No.
Date of Issue

19-5412A 24-Oct-19

910

71 MAGGIOLO DRIVE MACKAY QLD

REPORT ON DETERMINATION OF UNIAXIAL COMPRESSIVE STRENGTH ROCK STRENGTH LESS THAN 50 MPa

Mackay Laboratory Sheet 1 of 1 CLIENT: Central Queensland Coal JOB NO.: M30863 LAB REF NO: 19-5422A ADDRESS: Level 17, 240 Queen Street, Brisbane Qld 4000 PROJECT: CQ Coal Styx Basin Geotechnical Investigation SAMPLED BY: Cardno **SAMPLE DATE:** 02-Sep-19 LOCATION: Styx Basin **TEST DATE: TESTED BY:** 22-Oct-19 MS **TEST PROCEDURES: CHECKED BY: CHECK DATE:** AS 4133.1.1.1; 4.2.2 (2013) ΑW 24-Oct-19

Borehole No.	STX1903G	
Client sample number	ucs-100	
Corrected Depth from (m)		91.2
Corrected Depth to (m)		91.38
Stratigraphic horizon		-
Orientation of core axis		Vertical
Lithological description		sandstone
Mass of sample (g)		1389.6
Average sample diameter (mm)	61
Diameter variation > 0.3mm?		No
Average height (mm)		157.7
Length / Diameter ratio (ratio 2	.5 to 3)	2.6
Cross sectional area (mm²)		2922
Uniaxial Comp. Strength (MPa))	14.2
Number of specimens in samp	le	1
Moisture content (%)		0.5
Density at as received moisture content (t/m³)		3.02
Loading rate (N/min)	5000	
Time to failure (min)	8.28	
Max. applied load (kN)		41.5
Dominant structural features	Before	After
with respect to core axis (e) Tensile dominated		
Secant Young's Modulus (GPa	N/A	
Corrected Poisson's Ratio Remarks	N/A	
Inditality		

Storage History of Drilled by client, sampled by Cardno, wrapped and sealed, transported to Mackay laboratory.

specimens: Stored at room temperature and humidity and tested at as received moisture content.

Compression machine: Shimadzu U.E.H. -50 S/N 79097

Variations from standard: Time to failure less than standard 10 to 15 minutes.

Young's Modulus method: N/A Poisson's Ratio method: N/A

Accredited No.
Certificate No.
Date of Issue

910 19-5422A 24-Oct-19

71 MAGGIOLO DRIVE MACKAY QLD

REPORT ON DETERMINATION OF UNIAXIAL COMPRESSIVE STRENGTH ROCK STRENGTH LESS THAN 50 MPa

Mackay Laboratory Sheet 1 of 1 CLIENT: Central Queensland Coal JOB NO.: M30863 LAB REF NO: 19-5425A ADDRESS: Level 17, 240 Queen Street, Brisbane Qld 4000 PROJECT: CQ Coal Styx Basin Geotechnical Investigation SAMPLED BY: Cardno **SAMPLE DATE:** 02-Sep-19 LOCATION: Styx Basin **TEST DATE: TESTED BY:** 22-Oct-19 MS **TEST PROCEDURES: CHECKED BY: CHECK DATE:** AS 4133.1.1.1; 4.2.2 (2013) ΑW 24-Oct-19

Borehole No.			STX1903G	
Client sample number			ucs-103	
Corrected Depth from	(m)		95.4	
Corrected Depth to (m	1)		95.57	
Stratigraphic horizon			-	
Orientation of core axi	s		Vertical	
Lithological description	n		carbonaceous	
			siltstone	
Mass of sample (g)			905.8	
Average sample diam	eter (mn	n)	60.9	
Diameter variation > 0	.3mm?		No	
Average height (mm)			134.9	
Length / Diameter ration	o (ratio 2	2.5 to 3)	2.2	
Cross sectional area (mm²)		2913	
Uniaxial Comp. Streng	gth (MPa	a)	4.6	
Number of specimens	in samp	ole	1	
Moisture content (%)			3.5	
Density at as received moisture content (t/m³)		2.31		
Loading rate (N/min)			2500	
Time to failure (min)			5.32	
Max. applied load (kN	,		13.5	
Dominant structural fe		Before	After	
with respect to core ax	kis			
'	Y			
	人丨	ST. 18 (1)	建	
Z.				
	Tensile iinated			
Secant Young's Modulus (GPa)			N/A	
Corrected Poisson's Ratio			N/A	
Remarks				

Storage History of Drilled by client, sampled by Cardno, wrapped and sealed, transported to Mackay laboratory.

specimens: Stored at room temperature and humidity and tested at as received moisture content.

Compression machine: Shimadzu U.E.H. -50 S/N 79097

Variations from standard: Time to failure less than standard 10 to 15 minutes.

Height to diameter ratio less than 2.5 due to core structural features.

Young's Modulus method: N/A Poisson's Ratio method: N/A

Accredited No. Certificate No. Date of Issue

910 19-5425A 24-Oct-19

71 MAGGIOLO DRIVE MACKAY QLD

REPORT ON DETERMINATION OF UNIAXIAL COMPRESSIVE STRENGTH ROCK STRENGTH LESS THAN 50 MPa

Mackay Laboratory Sheet 1 of 1 CLIENT: Central Queensland Coal JOB NO.: M30863 LAB REF NO: 19-5428A ADDRESS: Level 17, 240 Queen Street, Brisbane Qld 4000 PROJECT: CQ Coal Styx Basin Geotechnical Investigation SAMPLED BY: Cardno **SAMPLE DATE:** 02-Sep-19 LOCATION: Styx Basin **TEST DATE: TESTED BY:** 22-Oct-19 MS **TEST PROCEDURES:** AS 4133.1.1.1; 4.2.2 (2013) **CHECKED BY: CHECK DATE:** ΑW 24-Oct-19

Borehole No.	STX1903G		
Client sample number	ucs-107		
Corrected Depth from (m)		99.82	
Corrected Depth to (m)		100.04	
Stratigraphic horizon		-	
Orientation of core axis		Vertical	
Lithological description		siltstone	
Mass of sample (g)		1199.1	
Average sample diameter (mn	n)	60.9	
Diameter variation > 0.3mm?		No	
Average height (mm)		158.6	
Length / Diameter ratio (ratio 2	2.5 to 3)	2.6	
Cross sectional area (mm ²)		2910	
Uniaxial Comp. Strength (MPa	1)	28.8	
Number of specimens in samp	ole	1	
Moisture content (%)	1.2		
Density at as received moistur	2.60		
Loading rate (N/min)	12500		
Time to failure (min)	6.45		
Max. applied load (kN)		83.7	
Dominant structural features	Before	After	
with respect to core axis			
	The state of the s		
(e) Tensile dominated	The state of the s		
Secant Young's Modulus (GPa	N/A		
Corrected Poisson's Ratio		N/A	
Remarks			

Storage History of Drilled by client, sampled by Cardno, wrapped and sealed, transported to Mackay laboratory.

specimens: Stored at room temperature and humidity and tested at as received moisture content.

Compression machine: Shimadzu U.E.H. -50 S/N 79097

Variations from standard: Time to failure less than standard 10 to 15 minutes.

Young's Modulus method: N/A Poisson's Ratio method: N/A

Accredited No. Certificate No. Date of Issue 910 19-5428A 24-Oct-19

71 MAGGIOLO DRIVE MACKAY QLD

REPORT ON DETERMINATION OF UNIAXIAL COMPRESSIVE STRENGTH ROCK STRENGTH LESS THAN 50 MPa

Mackay Laboratory Sheet 1 of 1 CLIENT: Central Queensland Coal JOB NO.: M30863 LAB REF NO: 19-5433A ADDRESS: Level 17, 240 Queen Street, Brisbane Qld 4000 PROJECT: CQ Coal Styx Basin Geotechnical Investigation SAMPLED BY: Cardno SAMPLE DATE: 02-Sep-19 LOCATION: Styx Basin **TESTED BY: TEST DATE:** 22-Oct-19 MS **TEST PROCEDURES: CHECKED BY: CHECK DATE:** AS 4133.1.1.1; 4.2.2 (2013) AW24-Oct-19

Borehole No.	STX1903G
Client sample number	ucs-111
Corrected Depth from (m)	112.62
Corrected Depth to (m)	112.78
Stratigraphic horizon	-
Orientation of core axis	Vertical
Lithological description	coal
Mass of sample (g)	555.3
Average sample diameter (mm)	61.1
Diameter variation > 0.3mm?	No
Average height (mm)	148.7
Length / Diameter ratio (ratio 2.5 to 3)	2.4
Cross sectional area (mm²)	2932
Uniaxial Comp. Strength (MPa)	6.0
Number of specimens in sample	1
Moisture content (%)	3.4
Density at as received moisture content (t/m ³)	1.27
Loading rate (N/min)	2500
Time to failure (min)	7.01
Max. applied load (kN)	17.5
Dominant structural features Before	After
with respect to core axis	
(d) Tensile	
dominated	
Secant Young's Modulus (GPa)	N/A
Corrected Poisson's Ratio	N/A
Inciliains	

Storage History of Drilled by client, sampled by Cardno, wrapped and sealed, transported to Mackay laboratory.

specimens: Stored at room temperature and humidity and tested at as received moisture content.

Compression machine: Shimadzu U.E.H. -50 S/N 79097

Variations from standard: Time to failure less than standard 10 to 15 minutes.

Height to diameter ratio less than 2.5 due to core structural features.

Young's Modulus method: N/A Poisson's Ratio method: N/A

Accredited No. Certificate No. Date of Issue 910 19-5433A 24-Oct-19

71 MAGGIOLO DRIVE MACKAY QLD

REPORT ON DETERMINATION OF UNIAXIAL COMPRESSIVE STRENGTH ROCK STRENGTH LESS THAN 50 MPa

Mackay Laboratory Sheet 1 of 1 CLIENT: Central Queensland Coal JOB NO.: M30863 LAB REF NO: 19-5438A ADDRESS: Level 17, 240 Queen Street, Brisbane Qld 4000 PROJECT: CQ Coal Styx Basin Geotechnical Investigation SAMPLED BY: Cardno **SAMPLE DATE:** 02-Sep-19 LOCATION: Styx Basin **TEST DATE: TESTED BY:** 22-Oct-19 MS **TEST PROCEDURES:** AS 4133.1.1.1; 4.2.2 (2013) **CHECKED BY: CHECK DATE:** ΑW 24-Oct-19

Borehole No.	STX1903G		
Client sample number	ucs-116		
Corrected Depth from (m)		119.68	
Corrected Depth to (m)		119.91	
Stratigraphic horizon		-	
Orientation of core axis		Vertical	
Lithological description		sandstone	
Mass of sample (g)		1186.1	
Average sample diameter (mn	n)	61	
Diameter variation > 0.3mm?		No	
Average height (mm)		156.4	
Length / Diameter ratio (ratio 2	2.5 to 3)	2.6	
Cross sectional area (mm²)		2919	
Uniaxial Comp. Strength (MPa	1)	6.9	
Number of specimens in samp	ole	1	
Moisture content (%)	1.6		
Density at as received moistur	2.60		
Loading rate (N/min)	2500		
Time to failure (min)		8.04	
Max. applied load (kN)		20.2	
Dominant structural features	Before	After	
with respect to core axis			
	400	1.000	
		900	
		Sec. Sec.	
	TO THE REAL PROPERTY.		
(e) Tensile dominated			
Secant Young's Modulus (GPa	a)	N/A	
Corrected Poisson's Ratio	N/A		
Remarks			

Storage History of Drilled by client, sampled by Cardno, wrapped and sealed, transported to Mackay laboratory.

specimens: Stored at room temperature and humidity and tested at as received moisture content.

Compression machine: Shimadzu U.E.H. -50 S/N 79097

Variations from standard: Time to failure less than standard 10 to 15 minutes.

Young's Modulus method: N/A Poisson's Ratio method: N/A

Accredited No. Certificate No. Date of Issue 910 19-5438A 24-Oct-19

71 MAGGIOLO DRIVE MACKAY QLD

REPORT ON DETERMINATION OF UNIAXIAL COMPRESSIVE STRENGTH ROCK STRENGTH LESS THAN 50 MPa

Mackay Laboratory Sheet 1 of 1 CLIENT: Central Queensland Coal JOB NO.: M30863 LAB REF NO: 19-5440A ADDRESS: Level 17, 240 Queen Street, Brisbane Qld 4000 PROJECT: CQ Coal Styx Basin Geotechnical Investigation SAMPLED BY: Cardno **SAMPLE DATE:** 02-Sep-19 LOCATION: Styx Basin **TEST DATE: TESTED BY:** 23-Oct-19 MS **TEST PROCEDURES: CHECKED BY: CHECK DATE:** AS 4133.1.1.1; 4.2.2 (2013) ΑW 24-Oct-19

Borehole No.	STX1903G		
Client sample number	ucs-118		
Corrected Depth from (m)		120.54	
Corrected Depth to (m)		120.8	
Stratigraphic horizon		-	
Orientation of core axis		Vertical	
Lithological description		carbonaceous	
		mudstone	
Mass of sample (g)		1136.4	
Average sample diameter (mm)	60.9	
Diameter variation > 0.3mm?		No	
Average height (mm)		161.7	
Length / Diameter ratio (ratio 2.	.5 to 3)	2.7	
Cross sectional area (mm²)		2916	
Uniaxial Comp. Strength (MPa))	8.7	
Number of specimens in sampl	le	1	
Moisture content (%)	2.4		
Density at as received moisture	2.41		
Loading rate (N/min)	5000		
Time to failure (min)	5.10		
Max. applied load (kN)		25.5	
Dominant structural features	Before	After	
with respect to core axis		- 4	
		A COM	
1		MILE	
	1000000		
	2 23	3	
ľ	11	,	
L			
(a) Single shear plane			
Secant Young's Modulus (GPa	N/A		
Corrected Poisson's Ratio	N/A		
Remarks			

Storage History of Drilled by client, sampled by Cardno, wrapped and sealed, transported to Mackay laboratory.

specimens: Stored at room temperature and humidity and tested at as received moisture content.

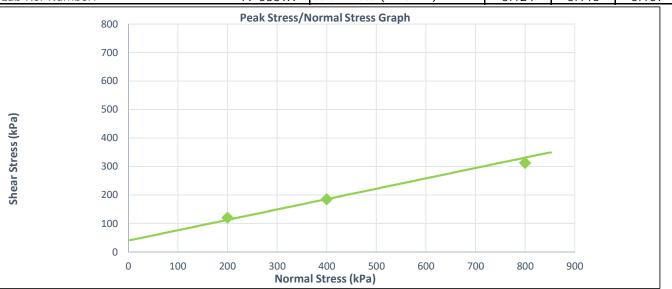
Compression machine: Shimadzu U.E.H. -50 S/N 79097

Variations from standard: Time to failure less than standard 10 to 15 minutes.

Young's Modulus method: N/A Poisson's Ratio method: N/A

Accredited No. Certificate No. Date of Issue 910 19-5440A 24-Oct-19

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740


Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report

Client: Report Number: **Central Queensland Coal** 19-5339A Report Date: Address: Level 17, 240 Queen Street, Brisbane, QLD 6/11/2019 Project Number: Order Number: M30863 AS 1289.6.2.2

Project Name: CQ Coal Styx Basin Geotechnical Investigati Test Method Location. STX1903G Shear-16 Page 1

Location.	17030	Silear-10			ı agc		
Borehole: STX1903G	Sample ID:	Shear-16	Depth From:	31.64	Depth To:	31.8	
Date Sampled:		2/09/2019	Stage No		1	2	3
Date Tested:		5/11/2019	Wet Density		2.27	2.27	2.27
Sampled By:		Cardno	Dry Density		2.15	2.15	2.15
Sampling Method:	Α	S 1289 1.2.1	Moisture (%)		5.5	5.5	5.5
Moisture Method:	Α	S 1289.2.1.1	Normal Stress (kPa)	200	400	800
Material Description:		Siltstone	Peak Shear Stre	ess (kPa)	120	185	313
Sample Type:		Core	Primary Consoli	dation (mm)	0.3	0.4	0.2
Lab Ref Number:		19-5339A	Strain Rate (mn	n/min)	0.124	0.115	0.107

Effective Cohesion C' (kPa): 40.0 Effective Angle of Friction ϕ' (Degrees): 20.0 Failure Criteria: Peak Shear Stress Sample/s supplied by Cardno Note: Graph not to scale

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. APPROVED SIGNATORY JOHANS

> Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report

Client: Central Queensland Coal

Address: Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M3086:

Project Name: CQ Coal Styx Basin Geotechnical Investigati Test Method

Location: STX1903G

Report Number: 19-5339A Report Date: 6/11/2019

Order Number:

est Method **AS 1289.6.2.2**

Page 2

Failure Details				
Stage No	Normal Stress (kPa)	Peak Shear Stress (kPa)	Displacement at Failure (mm)	Test Duration (min)
1	200	120	1.94	50
2	400	185	5.86	52
3	800	313	4.28	54

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report

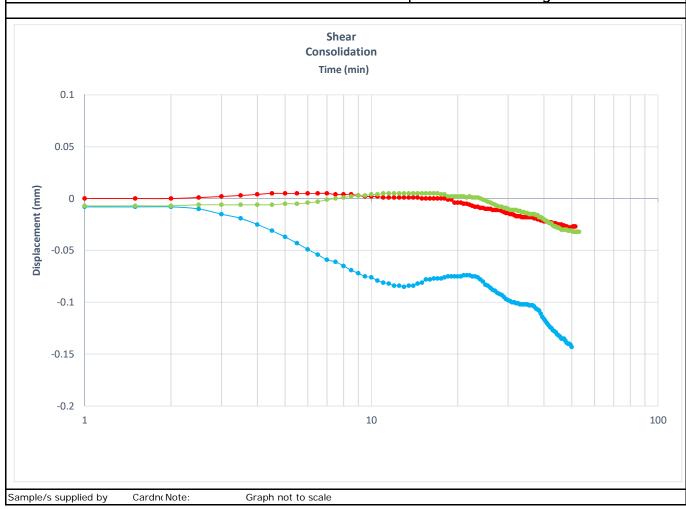
Client: Central Queensland Coal

Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Address:

Project Name: CQ Coal Styx Basin Geotechnical Investigati Test Method


Location: STX1903G

Report Number: 19-5339A Report Date: 6/11/2019

Order Number:

st Method **AS 1289.6.2.2**

Page 3

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740

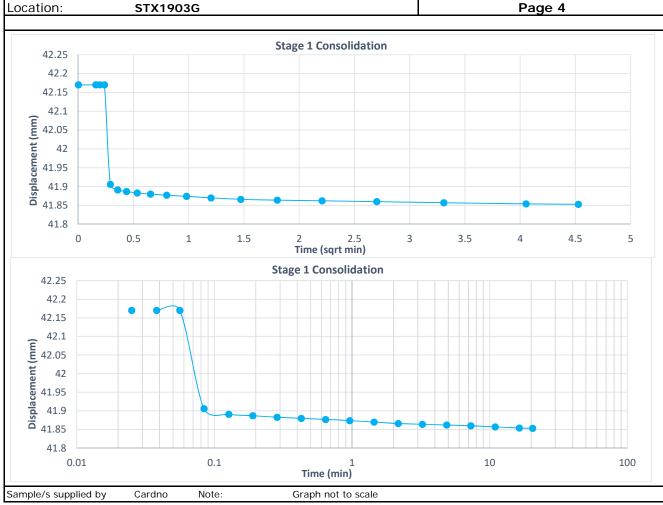
Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report

Client: **Central Queensland Coal**

Address: Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863


Project Name: CQ Coal Styx Basin Geotechnical Investigatio Test Method

Report Number: 19-5339A

Report Date: 6/11/2019 Order Number:

AS 1289.6.2.2

Page 4

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY HORINS

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report

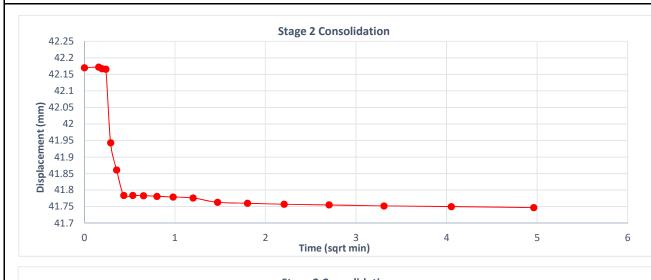
Client: Central Queensland Coal

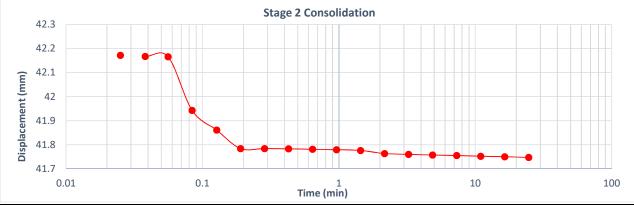
Address: Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Project Name: CQ Coal Styx Basin Geotechnical Investigatid Test Method

Location: STX1903G


Report Number: 19-5339A


Report Date: 6/11/2019

Order Number: -

Test Method **AS 1289.6.2.2**

Page 5

Sample/s supplied by Cardno Note: Graph not to scale

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report

Client: Central Queensland Coal

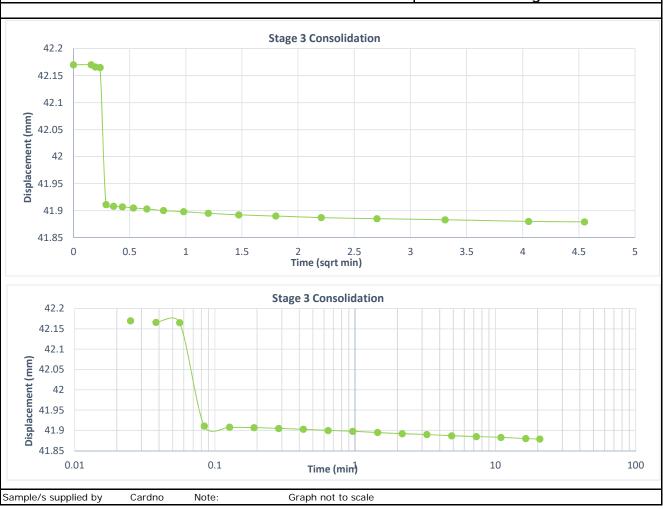
Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Address:

Project Name: CQ Coal Styx Basin Geotechnical Investigatio Test Method

Location: STX1903G


Report Number: 19-5339A

Report Date: 6/11/2019

Order Number: Test Method AS 1289.6.2.2

rest wethou AS 1269

Page 6

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740

Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

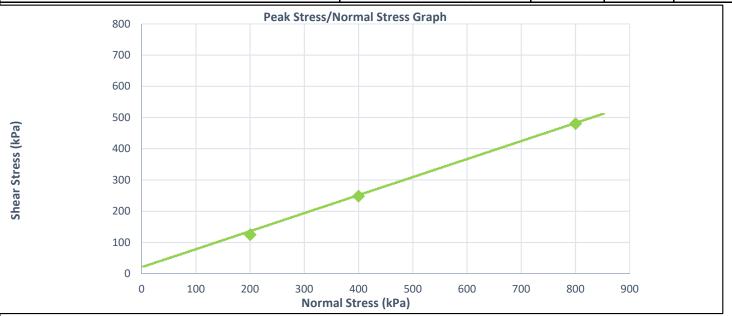
Direct Shear on Rock Report

Client: Central Queensland Coal

Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Address:


Project Name: CQ Coal Styx Basin Geotechnical Investigatid Test Method

Location: STX1903G Shear-23 Report Number: 19-5345A Report Date: 7/11/2019

Order Number:

AS 1289.6.2.2

Page 1 Borehole: STX1903G Sample ID: Shear-23 Depth From: 24.68 Depth To: 24.87 Date Sampled: 2/09/2019 Stage No 2 3 Date Tested: 5/11/2019 Wet Density 2.39 2.39 2.39 Cardno Dry Density Sampled By: 2.26 2.26 2.26 AS 1289 1.2.1 Moisture (%) Sampling Method: 5.5 5.5 5.5 AS 1289.2.1.1 Normal Stress (kPa) Moisture Method: 400 800 200 Sandstone Peak Shear Stress (kPa) Material Description: 125 248 480 Core Primary Consolidation (mm) Sample Type: 0.1 0.1 0.2 Lab Ref Number: Strain Rate (mm/min) 0.122 0.108 0.099

Effective Cohesion C' (kPa):

Effective Angle of Friction φ' (Degrees):

Failure Criteria:

Peak Shear Stress

Sample/s supplied by Cardno Note:

Graph not to scale

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

20.0

30.0

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report

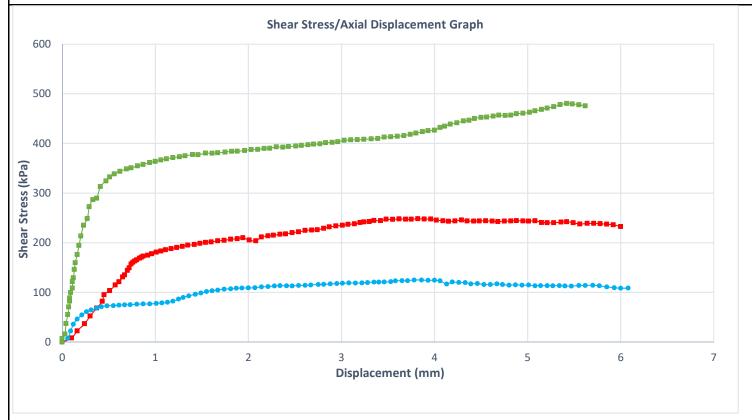
Client: Central Queensland Coal

Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Address:

Project Name: CQ Coal Styx Basin Geotechnical Investigatio Test Method


Location: STX1903G

Report Number: 19-5345A Report Date: 7/11/2019

Order Number:

st Method **AS 1289.6.2.2**

Page 2

Failure Details				
Stage No	Normal Stress (kPa)	Peak Shear Stress (kPa)	Displacement at Failure (mm)	Test Duration (min)
1	200	125	3.78	55
2	400	248	3.82	56
3	800	480	5.42	61

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

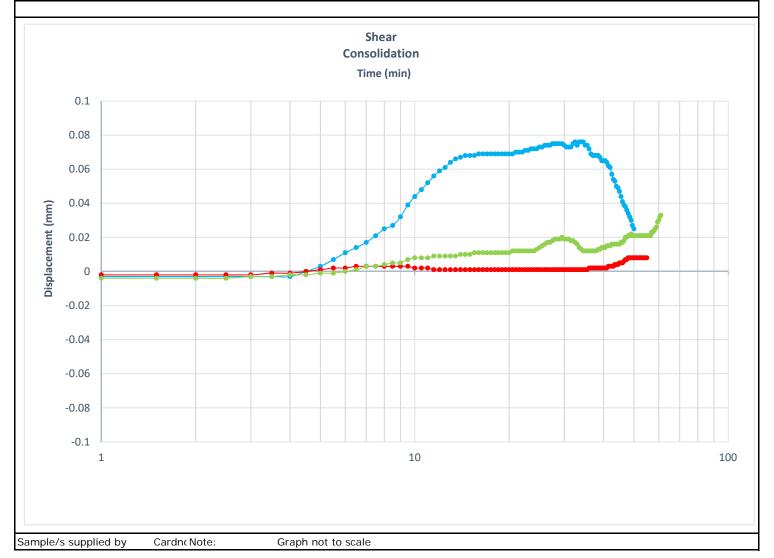
Direct Shear on Rock Report

Client: Central Queensland Coal

Address: Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Project Name: CQ Coal Styx Basin Geotechnical Investigatid Test Method


Location: STX1903G

Report Number: 19-5345A Report Date: 7/11/2019

Order Number:

st Method **AS 1289.6.2.2**

Page 3

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

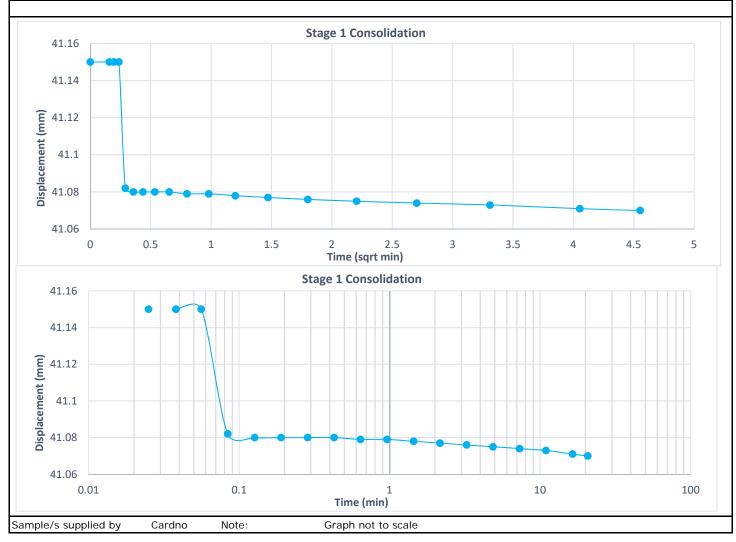
Direct Shear on Rock Report

Client: Central Queensland Coal

Address: Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Project Name: CQ Coal Styx Basin Geotechnical Investigation Test Method


Location: STX1903G

Report Number: 19-5345A Report Date: 7/11/2019

Order Number:

Test Method **AS 1289.6.2.2**

Page 4

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report

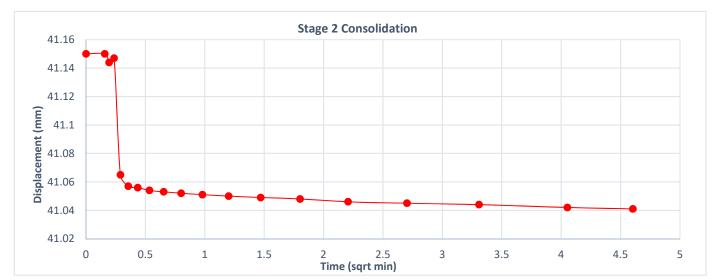
Client: Central Queensland Coal

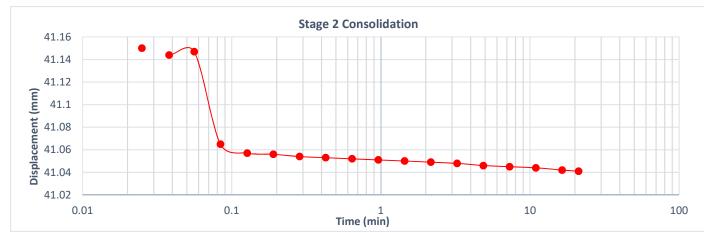
Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Address:

Project Name: CQ Coal Styx Basin Geotechnical Investigation Test Method


Location: STX1903G


Report Number: 19-5345A Report Date: 7/11/2019

Order Number:

Test Method **AS 1289.6.2.2**

Page 5

Sample/s supplied by Cardno Note: Graph not to scale

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

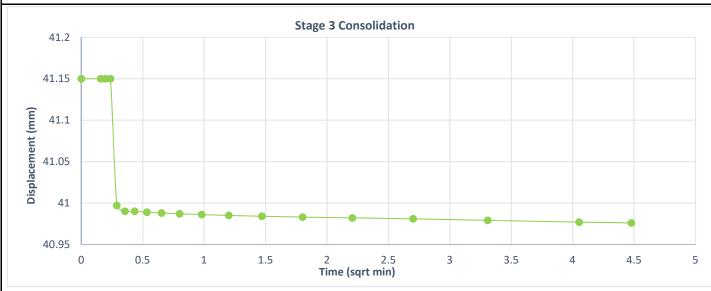
Direct Shear on Rock Report

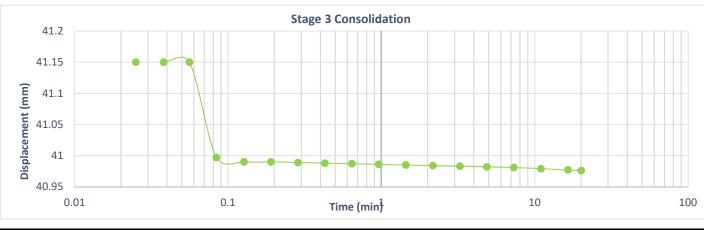
Client: Central Queensland Coal

Address: Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Project Name: CQ Coal Styx Basin Geotechnical Investigation Test Method


Location: STX1903G


Report Number: 19-5345A
Report Date: 7/11/2019

Order Number: -

Test Method **AS 1289.6.2.2**

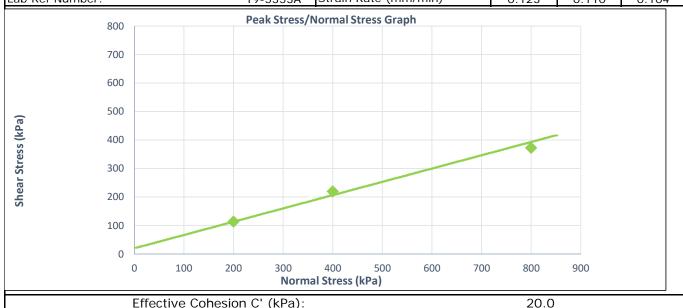
Page 6

Sample/s supplied by Cardno Note: Graph not to scale

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory


71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report

Client:Central Queensland CoalReport Number:19-5353AAddress:Level 17, 240 Queen Street, Brisbane, QLDReport Date:7/11/2019Project Number:M30863Order Number:-

Project Name: CQ Coal Styx Basin Geotechnical Investigati Test Method AS 1289.6.2.2
Location: STX1903G Shear-31 Page 1

Page 1 Borehole: STX1903G Sample ID: Shear-31 Depth From: 38.96 Depth To: 39.16 Date Sampled: 2/09/2019 Stage No 2 3 6/11/2019 Wet Density Date Tested: 2.31 2.32 2.32 Cardno Dry Density Sampled By: 2.17 2.18 2.17 Sampling Method: AS 1289 1.2.1 Moisture (%) 6.3 6.6 6.6 AS 1289.2.1.1 Normal Stress (kPa) Moisture Method: 200 400 800 Material Description: Sandstone Peak Shear Stress (kPa) 114 220 373 Core Primary Consolidation (mm) Sample Type: 0.4 0.2 0.3 Lab Ref Number: 19-5353A Strain Rate (mm/min) 0.123 0.110 0.104

Effective Cohesion C' (kPa): 20.0
Effective Angle of Friction φ' (Degrees): 25.0
Failure Criteria: Peak Shear Stress

Sample/s supplied by Cardn Note: Graph not to scale

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

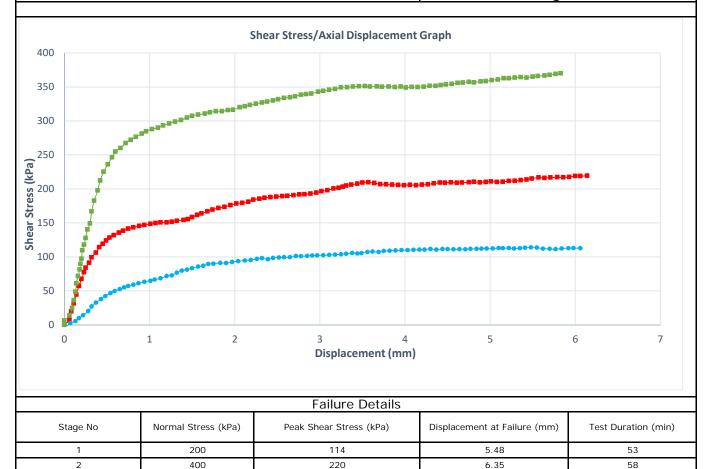
Direct Shear on Rock Report

Client: Central Queensland Coal

Address: Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M3086:

Project Name: CQ Coal Styx Basin Geotechnical Investigati Test Method


Location: STX1903G

Report Number: 19-5353A Report Date: 7/11/2019

Order Number:

est Method **AS 1289.6.2.2**

Page 2

373

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

800

APPROVED SIGNATORY

60

6.33

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report

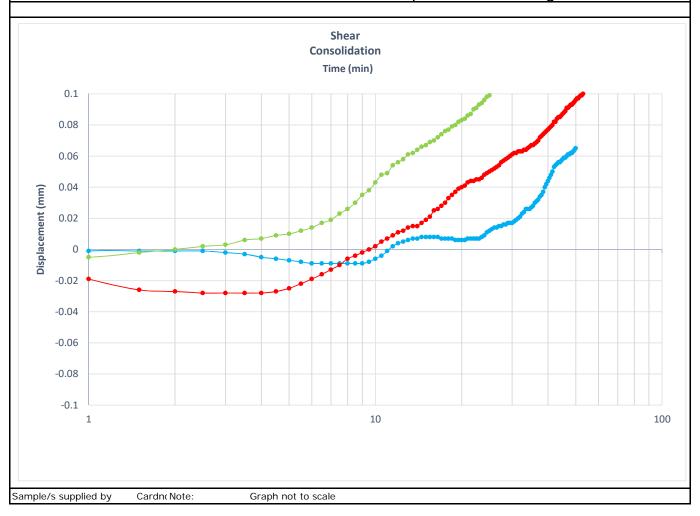
Client: Central Queensland Coal

Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Address:

Project Name: CQ Coal Styx Basin Geotechnical Investigati Test Method


Location: STX1903G

Report Number: 19-5353A Report Date: 7/11/2019

Order Number:

st Method **AS 1289.6.2.2**

Page 3

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

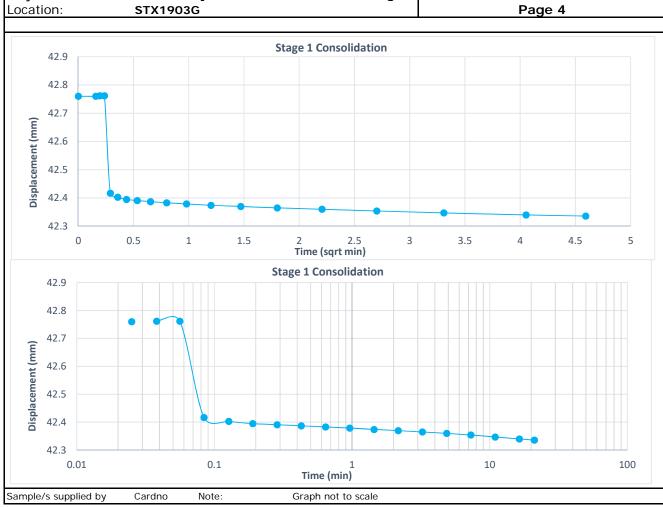
71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report

Central Queensland Coal

Address: Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863


Client:

Project Name: CQ Coal Styx Basin Geotechnical Investigatid Test Method

Report Number: 19-5353A

Report Date: 7/11/2019
Order Number: -

Test Method **AS 1289.6.2.2**

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report

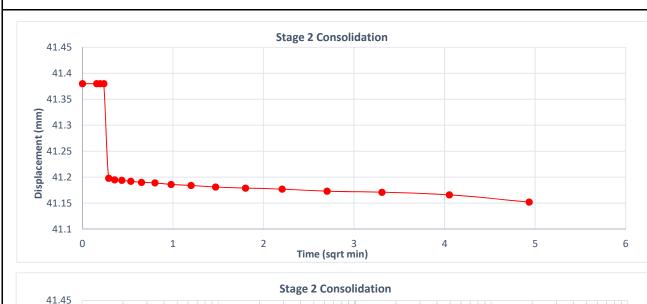
Client: Central Queensland Coal

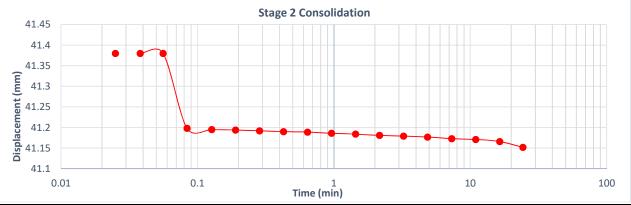
Address: Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M3086:

Project Name: CQ Coal Styx Basin Geotechnical Investigatid Test Method

Location: STX1903G


Report Number: 19-5353A


Report Date: **7/11/2019**

Order Number: -

Test Method **AS 1289.6.2.2**

Page 5

Sample/s supplied by Cardno Note: Graph not to scale

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

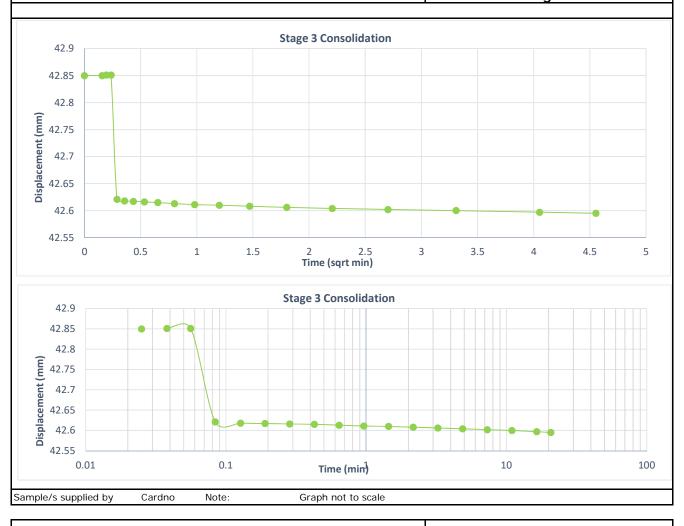
Direct Shear on Rock Report

Client: Central Queensland Coal Address: Level 17, 240 Queen Stre

Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Project Name: CQ Coal Styx Basin Geotechnical Investigatio Test Method


Location: STX1903G

Report Number: 19-5353A Report Date: 7/11/2019

Order Number: -

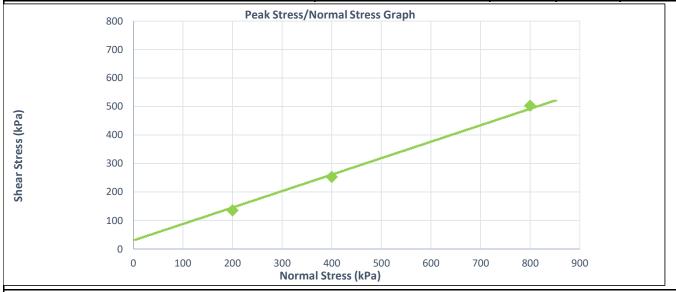
Test Method AS 1289.6.2.2

Page 6

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory


71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report

Client:Central Queensland CoalReport Number:19-5360AAddress:Level 17, 240 Queen Street, Brisbane, QLDReport Date:8/11/2019Project Number:M30863Order Number:-Project Name:CQ Coal Styx Basin Geotechnical InvestigatiTest MethodAS 1289.6.2.2

Location: STX1903G Shear-38 Page 1

Location.	1717030	Sileai-30			i age		
Borehole: STX1903	G Sample ID:	Shear-38	Depth From:	43.42	Depth To:	43.78	
Date Sampled:		2/09/2019	Stage No		1	2	3
Date Tested:		7/11/2019	Wet Density		2.40	2.23	2.25
Sampled By:		Cardno	Dry Density		2.32	2.14	2.17
Sampling Method:	P	AS 1289 1.2.1	Moisture (%)		3.5	4.1	3.6
Moisture Method:	P	AS 1289.2.1.1	Normal Stress (kPa)	200	400	800
Material Description:		Sandstone	Peak Shear Stre	ess (kPa)	136	253	503
Sample Type:		Core	Primary Consolid	dation (mm)	0.1	0.2	0.3
Lab Ref Number:		19-5360A	Strain Rate (mn	n/min)	0.117	0.108	0.097

Effective Cohesion C' (kPa): 30.0
Effective Angle of Friction φ' (Degrees): 30.0
Failure Criteria: Peak Shear Stress

Sample/s supplied by Cardno Note: Graph not to scale

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report

Client: Central Queensland Coal

Address: Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Project Name: CQ Coal Styx Basin Geotechnical Investigati Test Method


Location: STX1903G

Report Number: 19-5360A Report Date: 8/11/2019

Order Number:

st Method **AS 1289.6.2.2**

Page 2

Failure Details								
Stage No	Normal Stress (kPa)	Peak Shear Stress (kPa)	Displacement at Failure (mm)	Test Duration (min)				
1	200	136	1.99	61				
2	400	253	7.24	59				
3	800	503	6.87	61				

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report

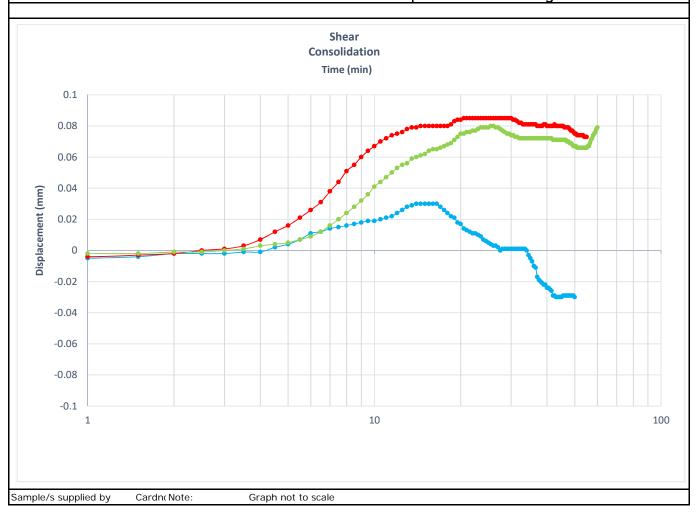
Client: Central Queensland Coal

Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Address:

Project Name: CQ Coal Styx Basin Geotechnical Investigati Test Method


Location: STX1903G

Report Number: 19-5360A Report Date: 8/11/2019

Order Number:

est Method **AS 1289.6.2.2**

Page 3

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740

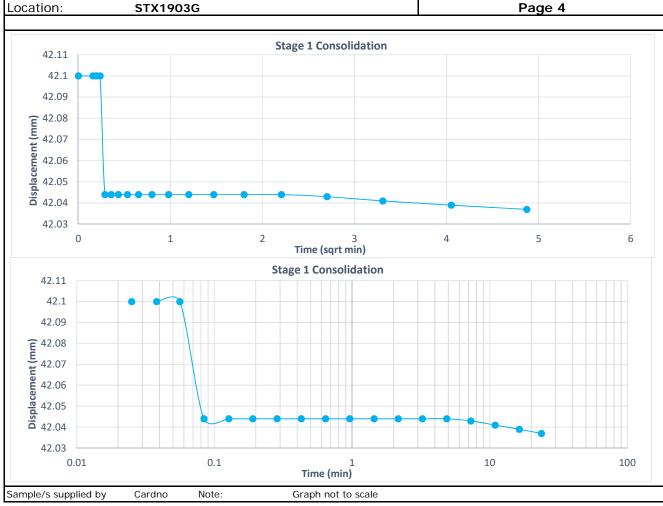
Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report

Client: **Central Queensland Coal**

Address: Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863


Project Name: CQ Coal Styx Basin Geotechnical Investigatio Test Method

Report Number: 19-5360A Report Date: 8/11/2019

Order Number:

AS 1289.6.2.2

Page 4

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report

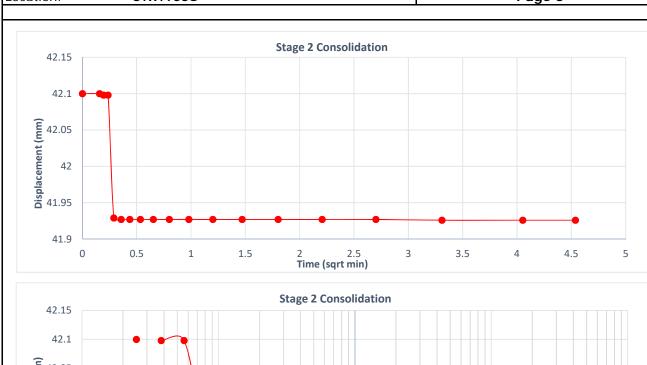
Client: Central Queensland Coal

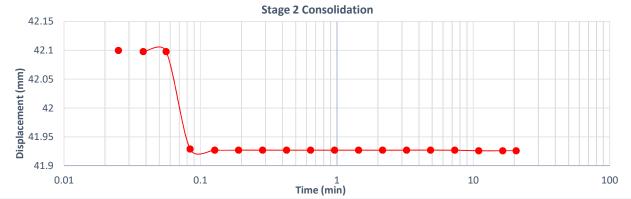
Address: Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M3086

Project Name: CQ Coal Styx Basin Geotechnical Investigatid Test Method

Location: STX1903G


Report Number: 19-5360A


Report Date: **8/11/2019**

Order Number: -

Test Method **AS 1289.6.2.2**

Page 5

Sample/s supplied by Cardno Note: Graph not to scale

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

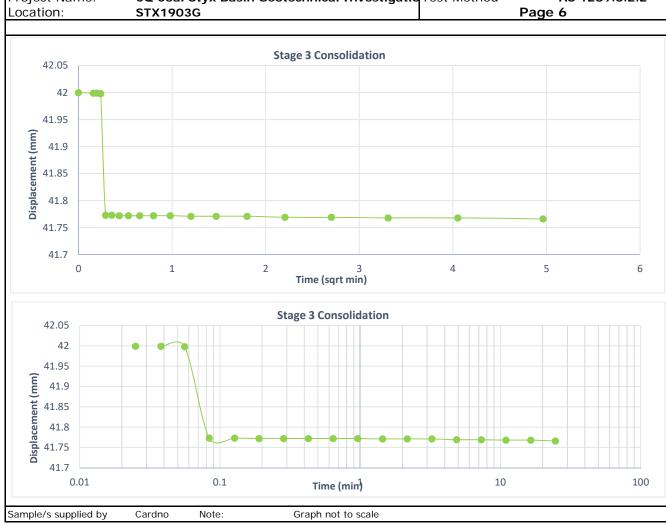
71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report

Client: Central Queensland Coal

Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863


Address:

Project Name: CQ Coal Styx Basin Geotechnical Investigatid Test Method

Report Number: 19-5360A

Report Date: 8/11/2019
Order Number: -

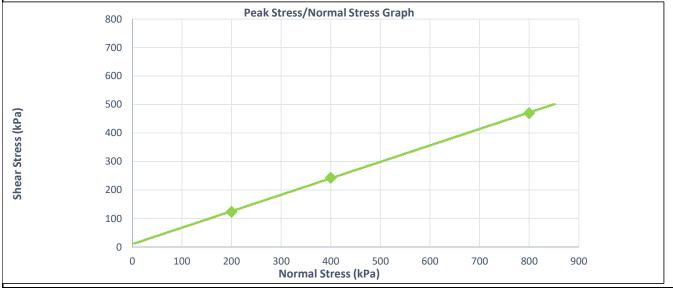
Test Method AS 1289.6.2.2

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au


Direct Shear on Rock Report

Client:Central Queensland CoalReport Number:19-5367AAddress:Level 17, 240 Queen Street, Brisbane, QLDReport Date:8/11/2019Project Number:M30863Order Number:-

Project Name: CQ Coal Styx Basin Geotechnical Investigati Test Method AS 1289.6.2.2

Location:STX1903GShear-45Page 1Borehole:STX1903GSample ID:Shear-45Depth From: 48.96Depth To:

Borehole: STX1903G	Sample ID: Shear-45	Depth From: 48.96	Depth To:	49.22	
Date Sampled:	2/09/2019	Stage No	1	2	3
Date Tested:	7/11/2019	Wet Density	2.53	2.44	2.49
Sampled By:	Cardno	Dry Density	2.43	2.34	2.39
Sampling Method:	AS 1289 1.2.1	Moisture (%)	4.3	4.3	4.3
Moisture Method:	AS 1289.2.1.1	Normal Stress (kPa)	200	400	800
Material Description:	Sandstone	Peak Shear Stress (kPa)	123	243	470
Sample Type:	Core	Primary Consolidation (mm)	0.1	0.1	0.2
Lab Ref Number:	19-5367A	Strain Rate (mm/min)	0.123	0.108	0.103
			-		

Effective Cohesion C' (kPa): 10.0
Effective Angle of Friction φ' (Degrees): 30.0
Failure Criteria: Peak Shear Stress

Sample/s supplied by Cardno Note: Graph not to scale

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

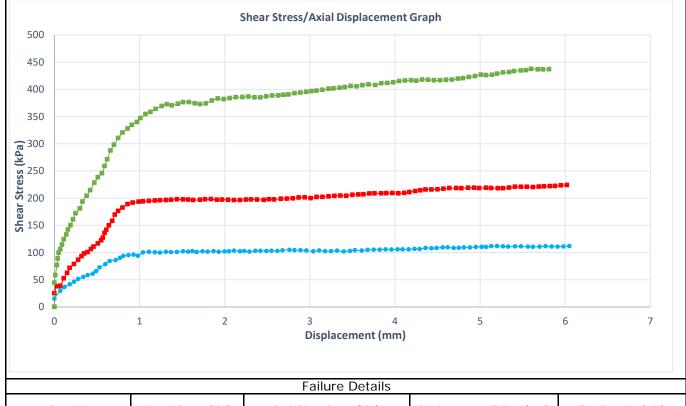
Direct Shear on Rock Report

Client: Central Queensland Coal

Address: Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Project Name: CQ Coal Styx Basin Geotechnical Investigati Test Method


Location: STX1903G

Report Number: 19-5367A

Report Date: 8/11/2019
Order Number: -

est Method **AS 1289.6.2.2**

Page 2

Failure Details								
Stage No	Normal Stress (kPa)	Peak Shear Stress (kPa)	Displacement at Failure (mm)	Test Duration (min)				
1	200	123	7.85	65				
2	400	243	7.90	64				
3	800	470	7.93	66				
L								

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report

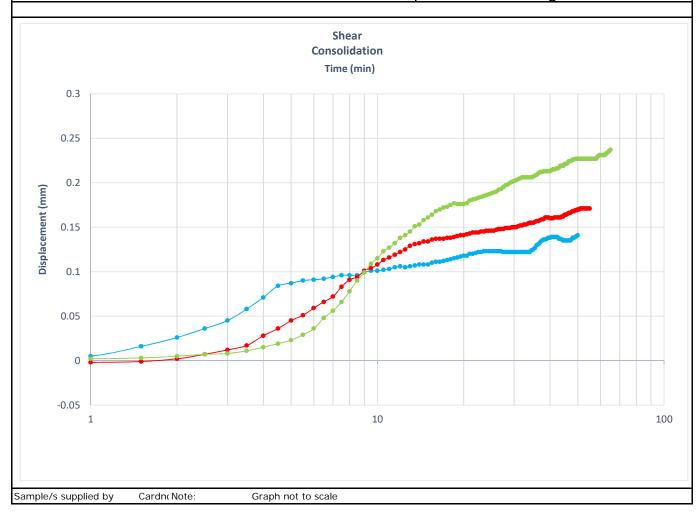
Client: Central Queensland Coal

Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Address:

Project Name: CQ Coal Styx Basin Geotechnical Investigati Test Method


Location: STX1903G

Report Number: 19-5367A Report Date: 8/11/2019

Order Number:

st Method **AS 1289.6.2.2**

Page 3

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report

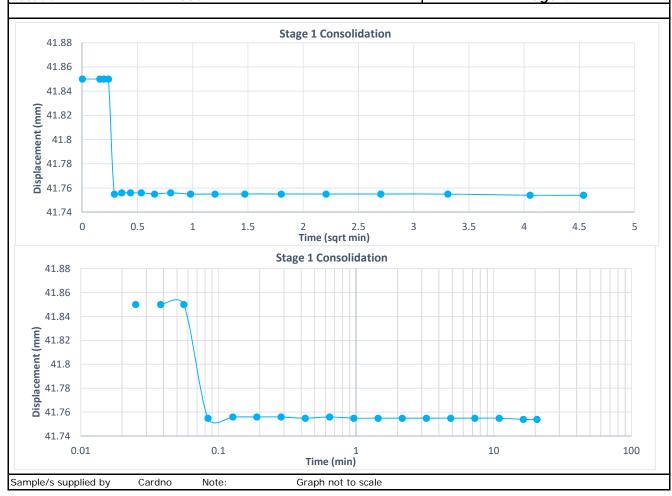
Central Queensland Coal

Address: Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Client:

Project Name: CQ Coal Styx Basin Geotechnical Investigatid Test Method


Location: STX1903G

Report Number: 19-5367A

Report Date: 8/11/2019
Order Number: -

Test Method **AS 1289.6.2.2**

Page 4

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report

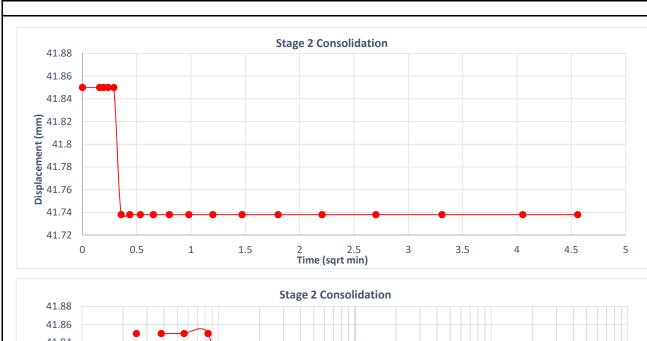
Client: Central Queensland Coal

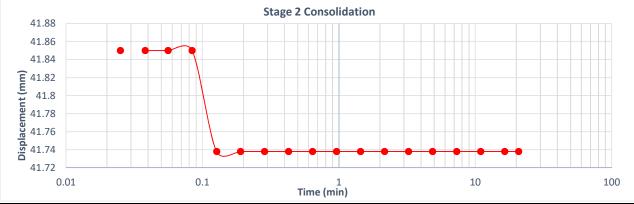
Address: Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M3086:

Project Name: CQ Coal Styx Basin Geotechnical Investigatid Test Method

Location: STX1903G


Report Number: 19-5367A


Report Date: **8/11/2019**

Order Number: -

Test Method **AS 1289.6.2.2**

Page 5

Sample/s supplied by Cardno Note: Graph not to scale

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report

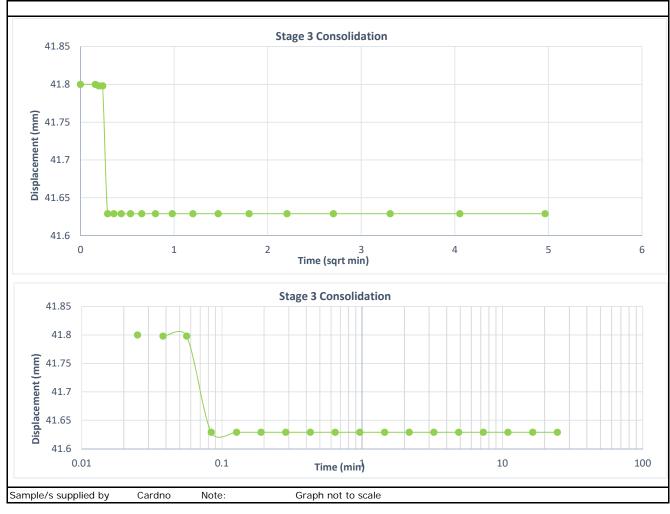
Client: Central Queensland Coal

Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Address:

Project Name: CQ Coal Styx Basin Geotechnical Investigatid Test Method


Location: STX1903G

Report Number: 19-5367A Report Date: 8/11/2019

Order Number:

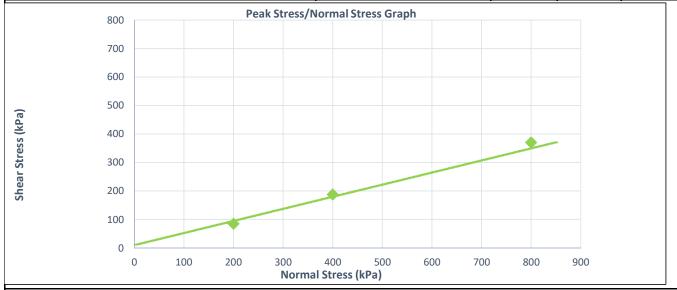
Test Method AS 1289.6.2.2

Page 6

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory


71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report

Client: Central Queensland Coal Report Number: 19-5373A
Address: Level 17, 240 Queen Street, Brisbane, QLD
Project Number: M30863 Order Number: Project Name: CQ Coal Styx Basin Geotechnical Investigati Test Method AS 1289.6.2.2

Location: STX1903G Shear-51 Page 1

Borehole: STX1903G Sample ID: Shear-51 Depth From: 51.46 51.6 Depth To: Date Sampled: 2/09/2019 Stage No 2 3 7/11/2019 Wet Density Date Tested: 1.29 1.30 1.29 Cardno Dry Density Sampled By: 1.22 1.24 1.23 Sampling Method: AS 1289 1.2.1 Moisture (%) 5.9 4.9 4.8 AS 1289.2.1.1 Normal Stress (kPa) Moisture Method: 200 400 800 Coal Peak Shear Stress (kPa) Material Description: 85 188 371 Sample Type: Core Primary Consolidation (mm) 0.2 0.4 0.2 Lab Ref Number: 19-5373A Strain Rate (mm/min) 0.127 0.116 0.105

Effective Cohesion C' (kPa): 10.0
Effective Angle of Friction φ' (Degrees): 23.0
Failure Criteria: Peak Shear Stress

Sample/s supplied by Cardn Note: Graph not to scale

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

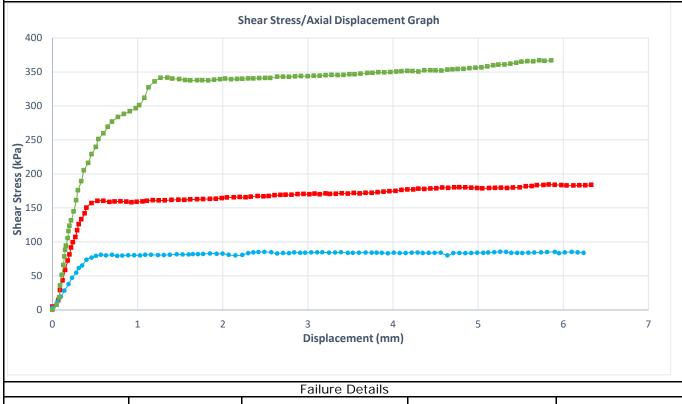
Direct Shear on Rock Report

Client: Central Queensland Coal

Address: Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Project Name: CQ Coal Styx Basin Geotechnical Investigati Test Method


Location: STX1903G

Report Number: 19-5373A Report Date: 8/11/2019

Order Number:

st Method **AS 1289.6.2.2**

Page 2

Failure Details								
Stage No Normal Stress (kPa)		Peak Shear Stress (kPa)	Displacement at Failure (mm)	Test Duration (min)				
1	200 85		5.26	54				
2	400	188	7.15	57				
3	800	371	6.67	57				

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report

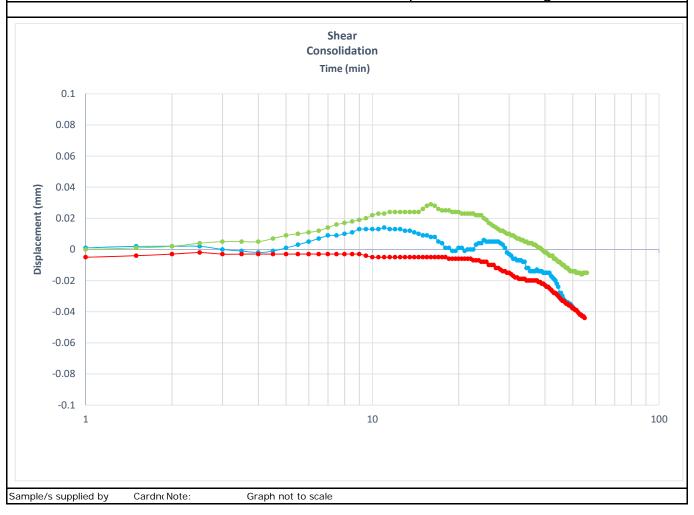
Client: Central Queensland Coal

Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Address:

Project Name: CQ Coal Styx Basin Geotechnical Investigati Test Method


Location: STX1903G

Report Number: 19-5373A Report Date: 8/11/2019

Order Number:

st Method **AS 1289.6.2.2**

Page 3

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

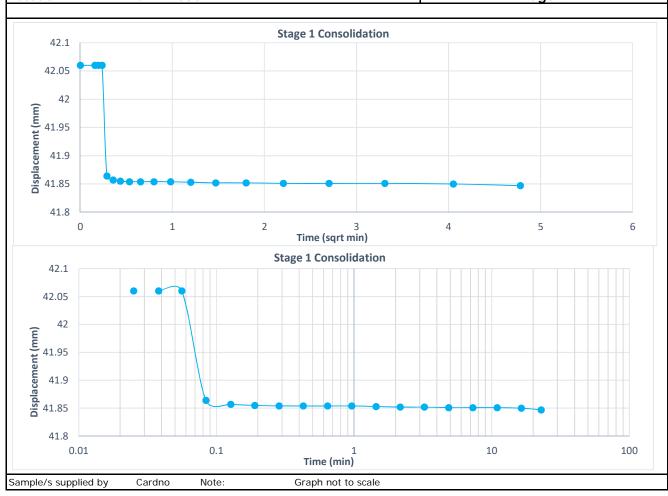
Direct Shear on Rock Report

Client: Central Queensland Coal

Address: Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Project Name: CQ Coal Styx Basin Geotechnical Investigatid Test Method


Location: STX1903G

Report Number: 19-5373A

Report Date: 8/11/2019
Order Number: -

Test Method AS 1289.6.2.2

Page 4

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report

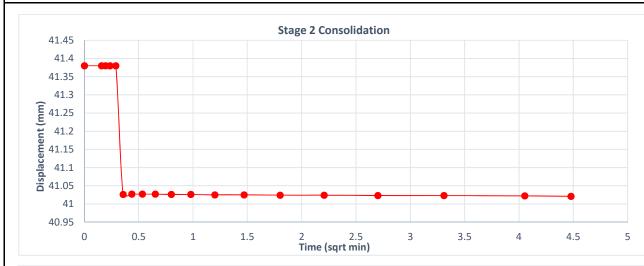
Client: Central Queensland Coal

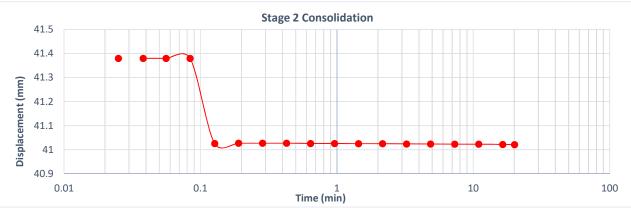
Address: Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Project Name: CQ Coal Styx Basin Geotechnical Investigatid Test Method

Location: STX1903G


Report Number: 19-5373A


Report Date: **8/11/2019**

Order Number: -

Test Method **AS 1289.6.2.2**

Page 5

Sample/s supplied by Cardno Note: Graph not to scale

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

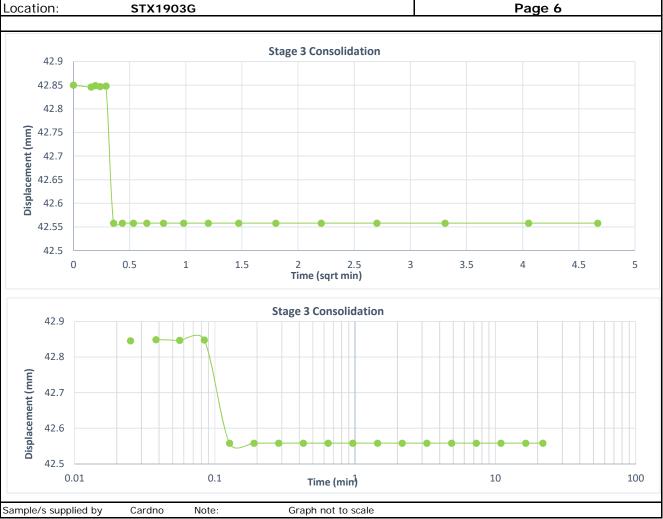
71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report

Client: Central Queensland Coal

Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863


Address:

Project Name: CQ Coal Styx Basin Geotechnical Investigatid Test Method

Report Number: 19-5373A

Report Date: 8/11/2019
Order Number: -

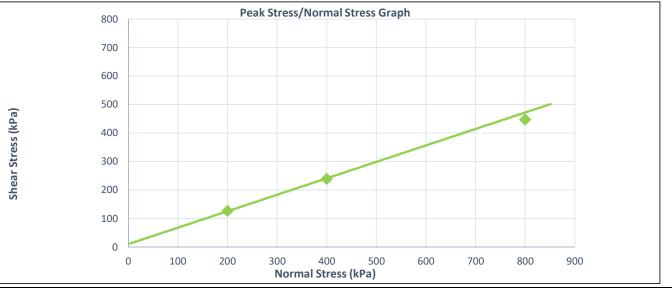
Test Method AS 1289.6.2.2

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au


Direct Shear on Rock Report

Client:Central Queensland CoalReport Number:19-5387AAddress:Level 17, 240 Queen Street, Brisbane, QLDReport Date:9/11/2019Project Number:M30863Order Number:-

Project Name: CQ Coal Styx Basin Geotechnical Investigati Test Method AS 1289.6.2.2

Location: STX1903G Shear-65 Page 1

Location: O.	7.7000	011041 00			. ugu	•	
Borehole: STX19030	Sample ID:	Shear-65	Depth From:	62.31	Depth To:	62.55	
Date Sampled:		2/09/2019	Stage No		1	2	3
Date Tested:		8/11/2019	Wet Density		2.45	2.36	2.33
Sampled By:		Cardno	Dry Density		2.33	2.23	2.21
Sampling Method:	Д	S 1289 1.2.1	Moisture (%)		5.1	5.9	5.6
Moisture Method:	Д	S 1289.2.1.1	Normal Stress (kPa)	200	400	800
Material Description:	Tuffaceou	ussandstone	Peak Shear Stre	ess (kPa)	127	239	447
Sample Type:		Core	Primary Consolid	dation (mm)	0.2	0.2	0.3
Lab Ref Number:		19-5387A	Strain Rate (mn	n/min)	0.120	0.110	0.103

Effective Cohesion C' (kPa): 10.0
Effective Angle of Friction φ' (Degrees): 30.0
Failure Criteria: Peak Shear Stress

Sample/s supplied by Cardnc Note: Graph not to scale

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report

Client: Central Queensland Coal

Address: Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Project Name: CQ Coal Styx Basin Geotechnical Investigati Test Method

Location: STX1903G

Report Number: 19-5387A Report Date: 9/11/2019

Order Number:

est Method **AS 1289.6.2.2**

Page 2

Failure Details								
Stage No	e No Normal Stress (kPa) Peak Shear Stress (kPa)		Displacement at Failure (mm)	Test Duration (min)				
1	200	127	7.85	62				
2	400	239	6.30	54				
3	800	447	6.56	57				

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report

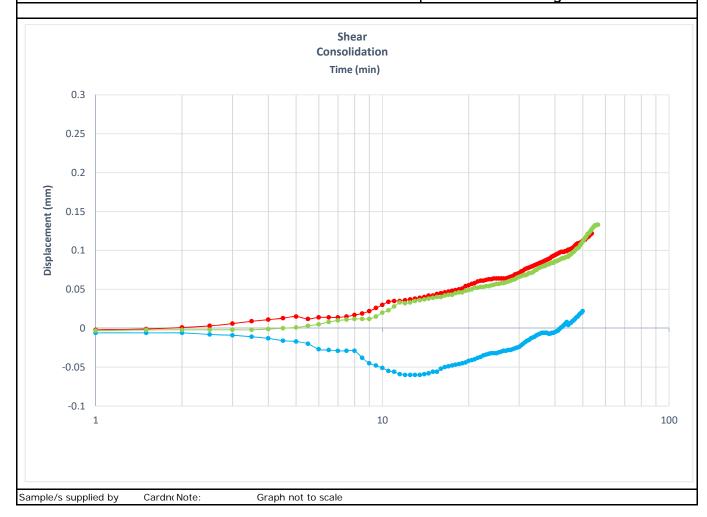
Client: Central Queensland Coal

Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Address:

Project Name: CQ Coal Styx Basin Geotechnical Investigati Test Method


Location: STX1903G

Report Number: 19-5387A Report Date: 9/11/2019

Order Number:

st Method **AS 1289.6.2.2**

Page 3

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740

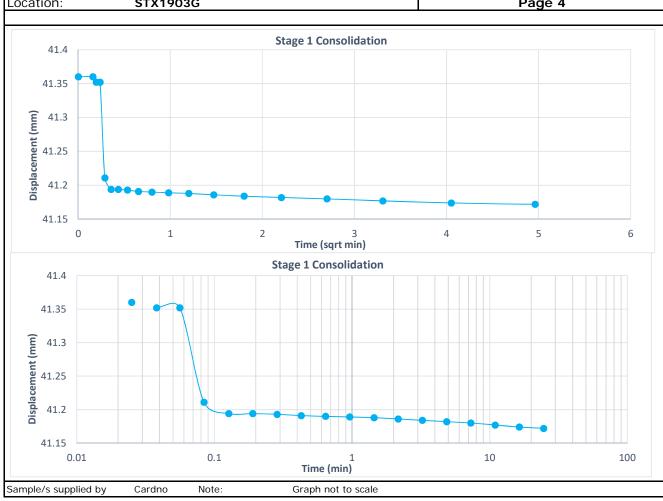
Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report

Client: **Central Queensland Coal**

Level 17, 240 Queen Street, Brisbane, QLD Address:

Project Number: M30863


Project Name: CQ Coal Styx Basin Geotechnical Investigatio Test Method

Location: STX1903G Report Number: 19-5387A

Report Date: 9/11/2019 Order Number:

AS 1289.6.2.2

Page 4

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report

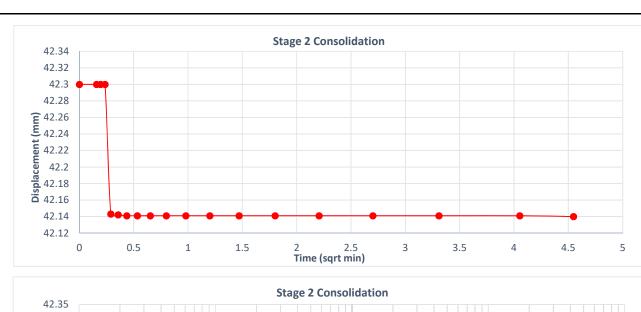
Client: Central Queensland Coal

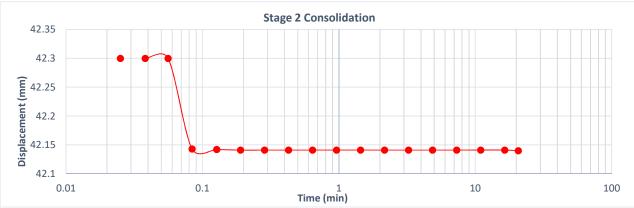
Address: Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M3086:

Project Name: CQ Coal Styx Basin Geotechnical Investigatid Test Method

Location: STX1903G


Report Number: 19-5387A


Report Date: 9/11/2019

Order Number: -

Test Method **AS 1289.6.2.2**

Page 5

Sample/s supplied by Cardno Note: Graph not to scale

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

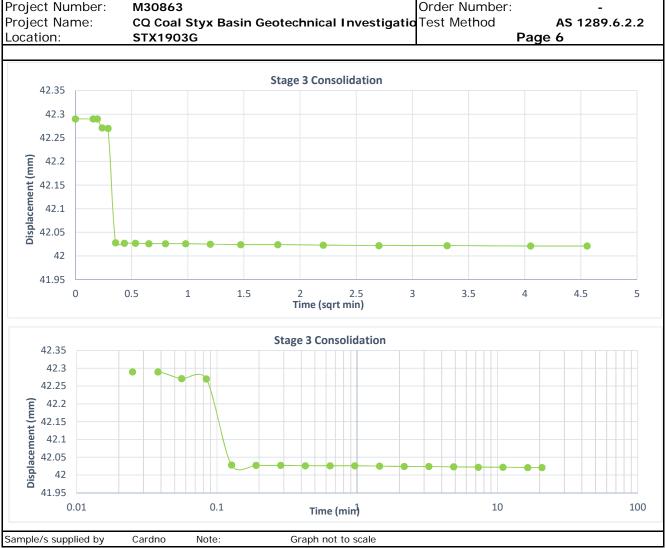
APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740

Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report


Client: **Central Queensland Coal**

Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Address:

Report Number: 19-5387A Report Date: 9/11/2019

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

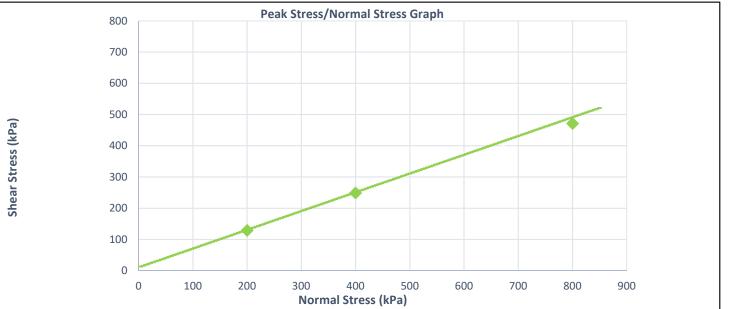
Direct Shear on Rock Report

Client: Central Queensland Coal

Address: Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Project Name: CQ Coal Styx Basin Geotechnical Investigatid Test Method


Location: STX1903G Shear-67

Report Number: 19-5389A Report Date: 9/11/2019

Order Number:

Test Method **AS 1289.6.2.2**

Location:	SIX	1903G	Snear-67			Page	l	
Borehole:	STX1903G	Sample ID:	Shear-67	Depth From:	63.72	Depth To:	63.95	
Date Sample	ed:		2/09/2019	Stage No		1	2	3
Date Tested:			8/11/2019	Wet Density		2.39	2.37	2.45
Sampled By:			Cardno	Dry Density		2.25	2.23	2.30
Sampling Me	thod:	A	AS 1289 1.2.1	Moisture (%)		6.3	6.7	6.2
Moisture Met	hod:	A	AS 1289.2.1.1	Normal Stress (I	kPa)	200	400	800
Material Des	cription:		Sandstone	Peak Shear Stre	ss (kPa)	129	249	471
Sample Type	: :		Core	Primary Consolid	dation (mm)	0.1	0.2	0.3
Lab Ref Num	ber:		19-5389A	Strain Rate (mm	n/min)	0.123	0.113	0.103

Effective Cohesion C' (kPa):

Effective Angle of Friction φ' (Degrees):

Failure Criteria:

31.0

Peak Shear Stress

Sample/s supplied by Cardno Note: Graph not to scale

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

10.0

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740

Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report

Client: **Central Queensland Coal**

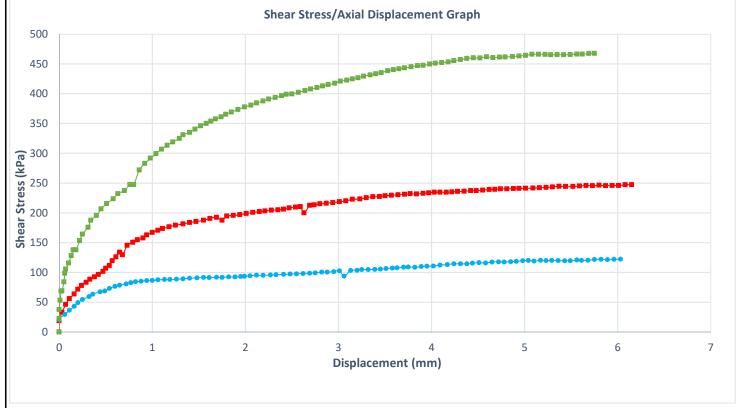
Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Address:

Project Name: CQ Coal Styx Basin Geotechnical Investigatid Test Method

Location: STX1903G


Report Number: 19-5389A Report Date:

9/11/2019

Order Number:

AS 1289.6.2.2

Page 2 **Shear Stress/Axial Displacement Graph**

Failure Details								
Stage No	Normal Stress (kPa)	Peak Shear Stress (kPa) Displacement at Failure (mm)		Test Duration (min)				
1	200	129	7.43	58				
2	400	249	6.66	54				
3	800	471	6.17	54				

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

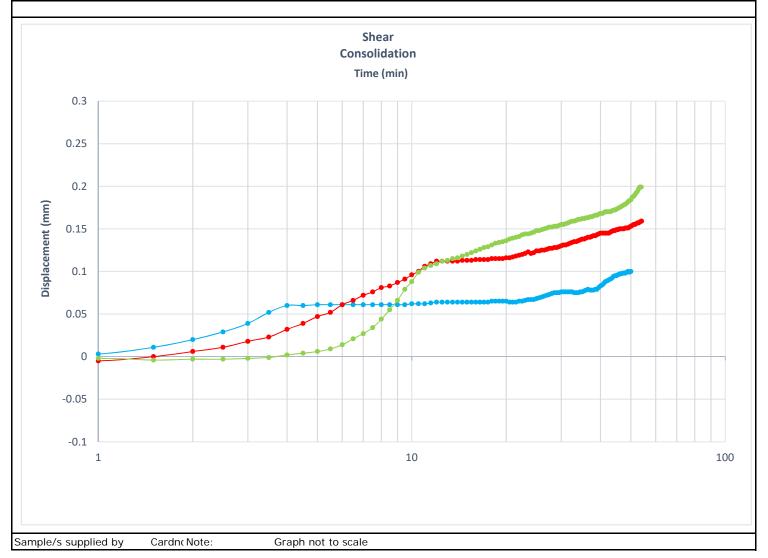
Direct Shear on Rock Report

Client: Central Queensland Coal

Address: Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Project Name: CQ Coal Styx Basin Geotechnical Investigatid Test Method


Location: STX1903G

Report Number: 19-5389A Report Date: 9/11/2019

Order Number:

st Method **AS 1289.6.2.2**

Page 3

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

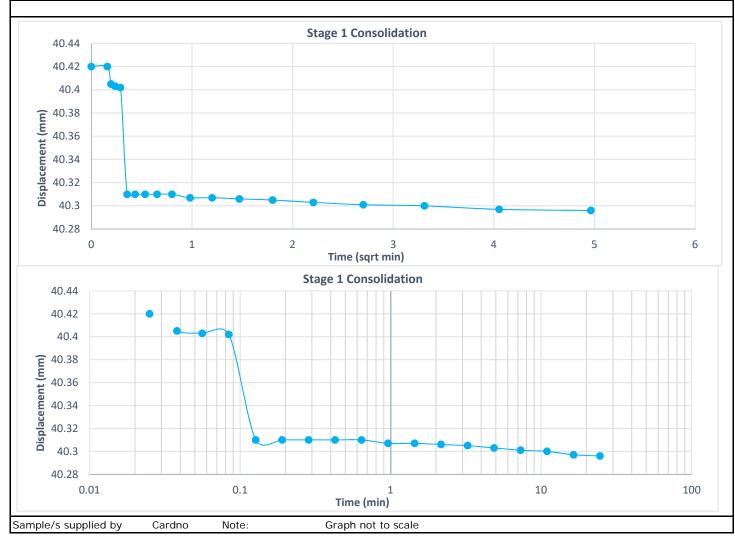
Direct Shear on Rock Report

Client: Central Queensland Coal

Address: Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Project Name: CQ Coal Styx Basin Geotechnical Investigation Test Method


Location: STX1903G

Report Number: 19-5389A Report Date: 9/11/2019

Order Number: -

Test Method **AS 1289.6.2.2**

Page 4

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report

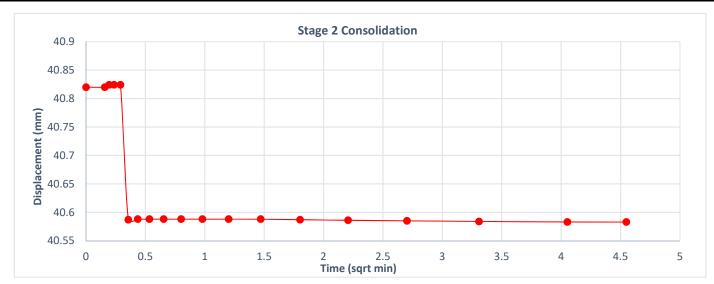
Client: Central Queensland Coal

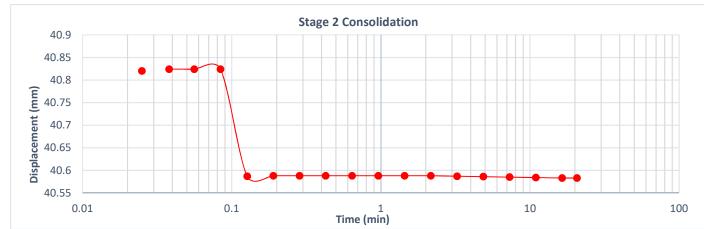
Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Address:

Project Name: CQ Coal Styx Basin Geotechnical Investigation Test Method


Location: STX1903G


Report Number: 19-5389A Report Date: 9/11/2019

Order Number:

Test Method **AS 1289.6.2.2**

Page 5

Sample/s supplied by Cardno Note: Graph not to scale

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report

Client: Central Queensland Coal

Address: Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Project Name: CQ Coal Styx Basin Geotechnical Investigation Test Method

Report Number: 19-5389A Report Date: 9/11/2019

Order Number:

Test Method **AS 1289.6.2.2**

Time (min)

Graph not to scale

0.01

Sample/s supplied by

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

0.1

Note:

Cardno

APPROVED SIGNATORY

10

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory 100

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740

Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

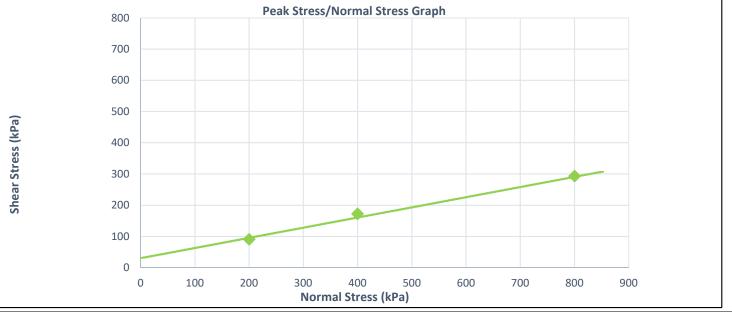
Direct Shear on Rock Report

Client: Central Queensland Coal

Address: Level 17, 240 Queen Street, Brisbane, QLD

Project Number:

Project Name: CQ Coal Styx Basin Geotechnical Investigatid Test Method


Location CTV1002C

Report Number: 19-5399A Report Date: 12/11/2019

Order Number:

AS 1289.6.2.2

Location:	217	1903G	Snear-77			Page	I	
Borehole:	STX1903G	Sample ID:	Shear-77	Depth From:	72.00	Depth To:	72.2	
Date Sample	ed:		2/09/2019	Stage No		1	2	3
Date Tested:			11/11/2019	Wet Density		2.27	2.27	2.25
Sampled By:			Cardno	Dry Density		2.14	2.13	2.10
Sampling Me	thod:	P	AS 1289 1.2.1	Moisture (%)		6.4	6.8	7.0
Moisture Met	:hod:	P	AS 1289.2.1.1	Normal Stress (I	kPa)	200	400	800
Material Des	cription:	Carbonaced	ous Siltstone	Peak Shear Stre	ss (kPa)	91	172	294
Sample Type	: :		Core	Primary Consolid	dation (mm)	0.1	0.4	0.2
Lab Ref Num	ber:		19-5399A	Strain Rate (mm	n/min)	0.129	0.114	0.107

Effective Cohesion C' (kPa): Effective Angle of Friction φ' (Degrees): Failure Criteria: Peak Shear Stress

Sample/s supplied by Cardno Note: Graph not to scale

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

30.0

18.0

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report

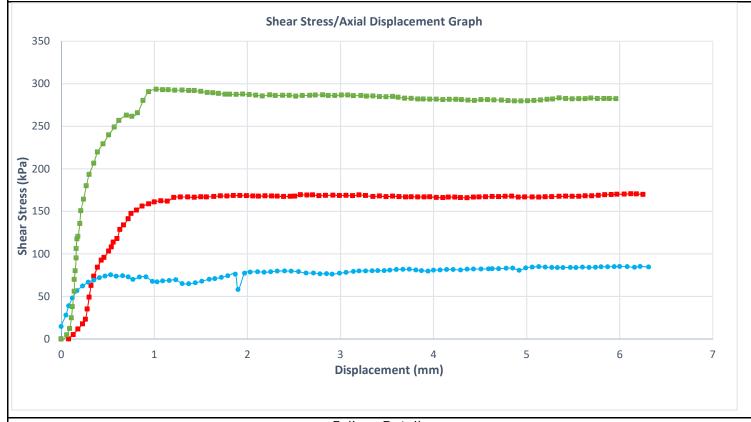
Client: Central Queensland Coal

Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Address:

Project Name: CQ Coal Styx Basin Geotechnical Investigatio Test Method


Location: STX1903G

Report Number: 19-5399A Report Date: 12/11/2019

Order Number: -

st Method **AS 1289.6.2.2**

Page 2

Failure Details								
Stage No	e No Normal Stress (kPa) Peak Shear Stress (kPa)		Displacement at Failure (mm)	Test Duration (min)				
1	200	91	7.22	57				
2	400	172	6.72	55				
3	800	294	1.02	53				

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

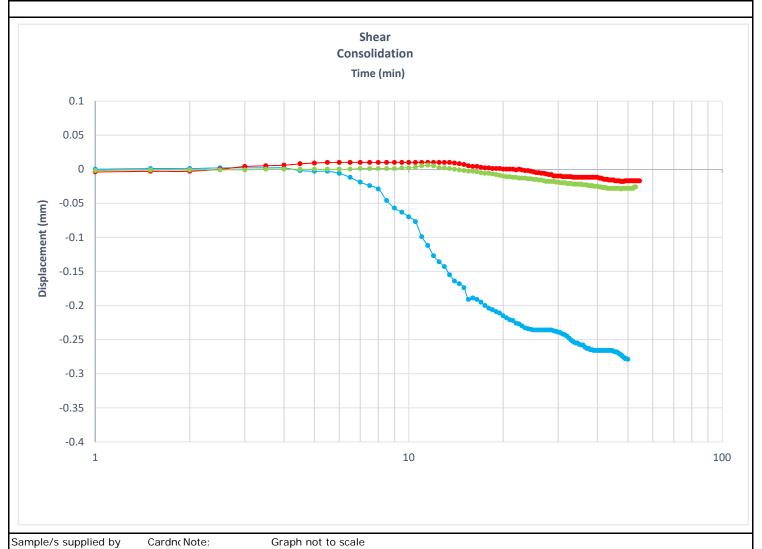
Direct Shear on Rock Report

Client: Central Queensland Coal

Address: Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Project Name: CQ Coal Styx Basin Geotechnical Investigatid Test Method


Location: STX1903G

Report Number: 19-5399A Report Date: 12/11/2019

Order Number:

est Method **AS 1289.6.2.2**

Page 3

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

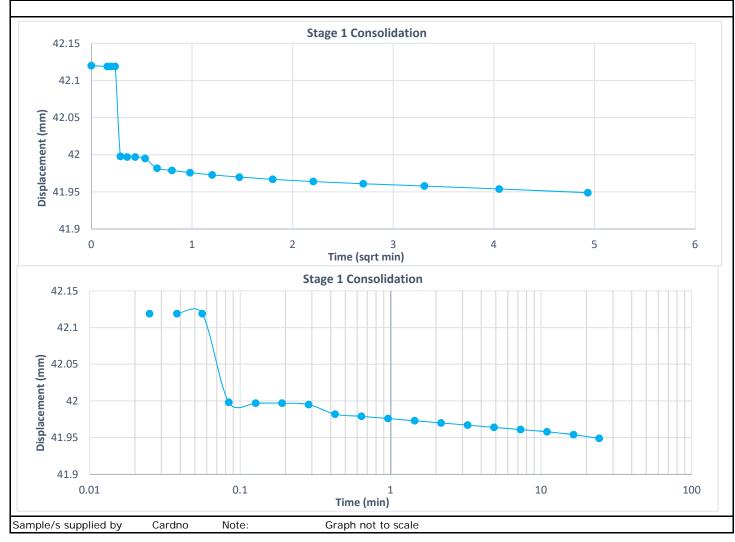
Direct Shear on Rock Report

Client: Central Queensland Coal

Address: Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Project Name: CQ Coal Styx Basin Geotechnical Investigation Test Method


Location: STX1903G

Report Number: 19-5399A
Report Date: 12/11/2019

Order Number:

Test Method **AS 1289.6.2.2**

Page 4

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report

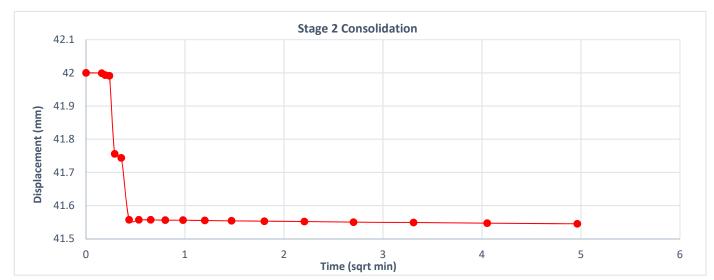
Client: Central Queensland Coal

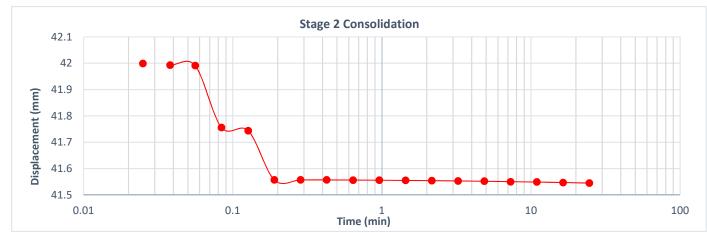
Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Address:

Project Name: CQ Coal Styx Basin Geotechnical Investigation Test Method


Location: STX1903G


Report Number: 19-5399A Report Date: 12/11/2019

Order Number:

Test Method **AS 1289.6.2.2**

Page 5

Sample/s supplied by Cardno Note: Graph not to scale

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report

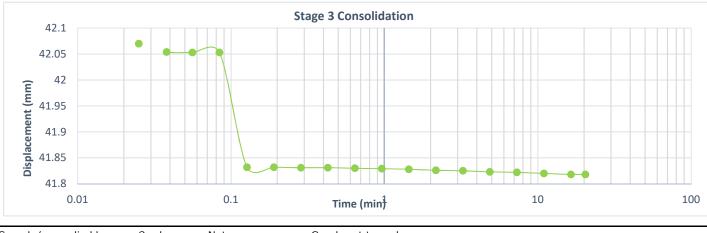
Client: Central Queensland Coal

Address: Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Project Name: CQ Coal Styx Basin Geotechnical Investigation Test Method


Location: STX1903G


Report Number: 19-5399A

Report Date: 12/11/2019
Order Number: -

Test Method **AS 1289.6.2.2**

Page 6

Sample/s supplied by Cardno Note: Graph not to scale

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740

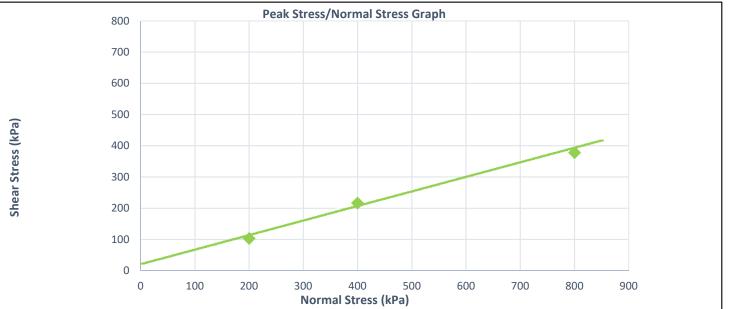
Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report

Client: Central Queensland Coal

Address: Level 17, 240 Queen Street, Brisbane, QLD

Project Number:


Project Name: CQ Coal Styx Basin Geotechnical Investigatid Test Method

Report Number: 19-5409A Report Date: 12/11/2019

Order Number:

AS 1289.6.2.2

Location:	1: STX1903G		Shear-87			Page 1			
Borehole:	STX1903G	Sample ID:	Shear-87	Depth From:	75.71	Depth To:	75.93		
Date Sample	ed:		2/09/2019	Stage No		1	2	3	
Date Tested:			11/11/2019	Wet Density		2.30	2.38	2.27	
Sampled By:			Cardno	Dry Density		2.17	2.24	2.15	
Sampling Me	thod:	A	S 1289 1.2.1	Moisture (%)		5.7	6.3	5.5	
Moisture Met	hod:	A	S 1289.2.1.1	Normal Stress (k	kPa)	200	400	800	
Material Des	cription:	Carbonaced	us Siltstone	Peak Shear Stre	ss (kPa)	103	216	378	
Sample Type	: :		Core	Primary Consolic	dation (mm)	0.2	0.2	0.3	
Lab Ref Num	ber:		19-5409A	Strain Rate (mm	n/min)	0.125	0.114	0.106	

Effective Cohesion C' (kPa): 20.0 Effective Angle of Friction φ' (Degrees): 25.0

Failure Criteria: Peak Shear Stress

Sample/s supplied by Cardno Note: Graph not to scale

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report

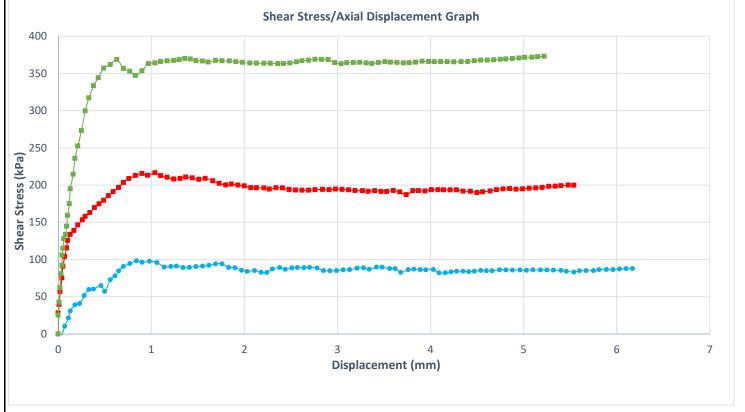
Client: Central Queensland Coal

Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Address:

Project Name: CQ Coal Styx Basin Geotechnical Investigatio Test Method


Location: STX1903G

Report Number: 19-5409A Report Date: 12/11/2019

Order Number: -

est Method **AS 1289.6.2.2**

Page 2

		Failure Details		
Stage No	Normal Stress (kPa)	Peak Shear Stress (kPa)	Displacement at Failure (mm)	Test Duration (min)
1	200	103	6.49	50
2	400	216	1.04	50
3	800	378	5.62	49

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

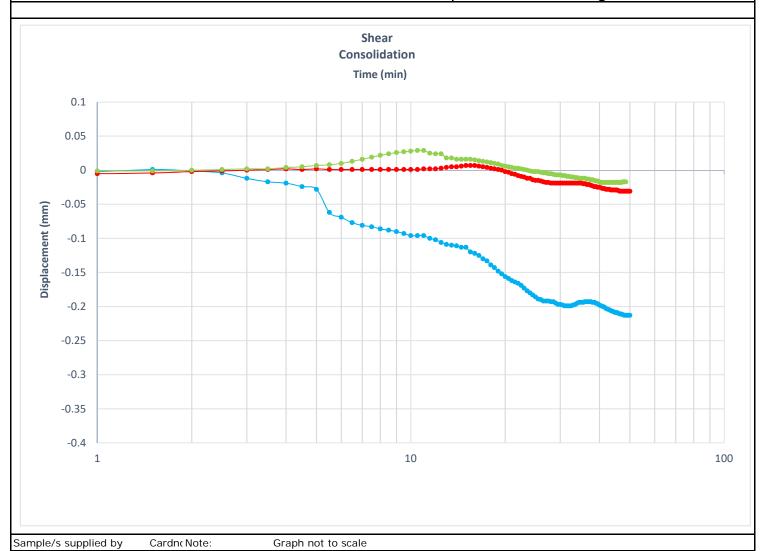
Direct Shear on Rock Report

Client: Central Queensland Coal

Address: Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Project Name: CQ Coal Styx Basin Geotechnical Investigatid Test Method


Location: STX1903G

Report Number: 19-5409A Report Date: 12/11/2019

Order Number:

est Method **AS 1289.6.2.2**

Page 3

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

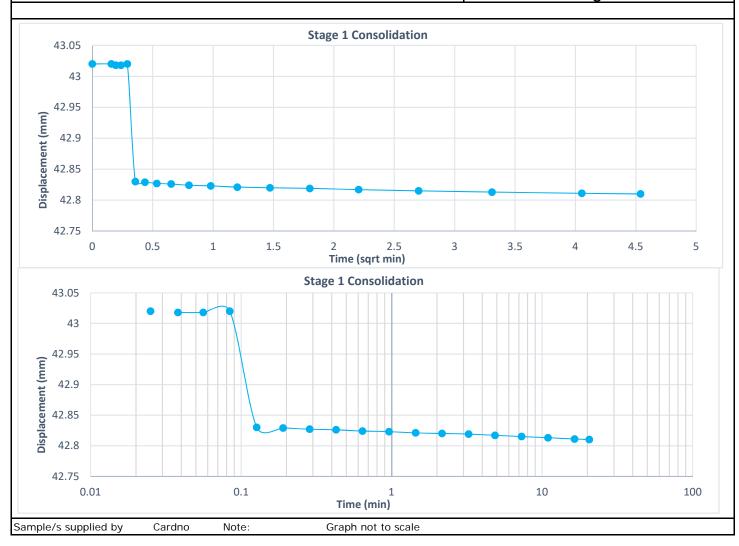
Direct Shear on Rock Report

Client: Central Queensland Coal

Address: Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Project Name: CQ Coal Styx Basin Geotechnical Investigation Test Method


Location: STX1903G

Report Number: 19-5409A Report Date: 12/11/2019

Order Number:

Test Method **AS 1289.6.2.2**

Page 4

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report

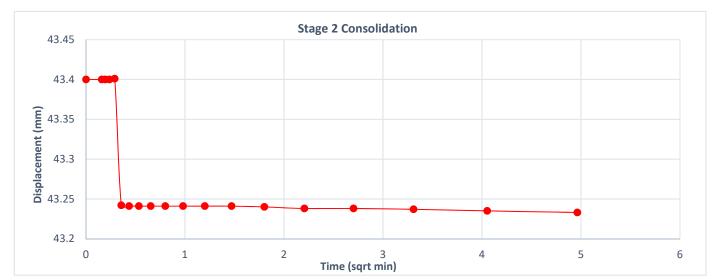
Client: Central Queensland Coal

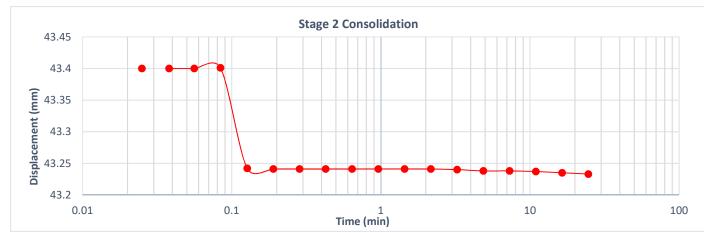
Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Address:

Project Name: CQ Coal Styx Basin Geotechnical Investigation Test Method


Location: STX1903G


Report Number: 19-5409A Report Date: 12/11/2019

Order Number:

Test Method AS 1289.6.2.2

Page 5

Sample/s supplied by Cardno Note: Graph not to scale

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

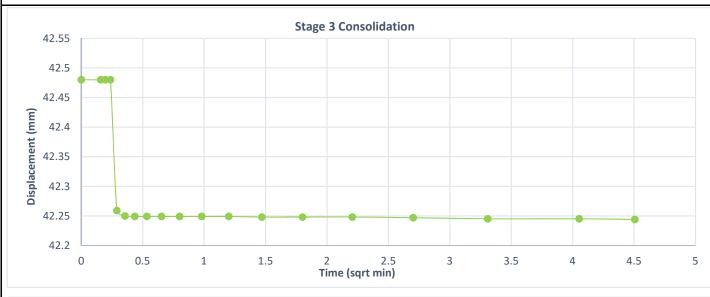
Direct Shear on Rock Report

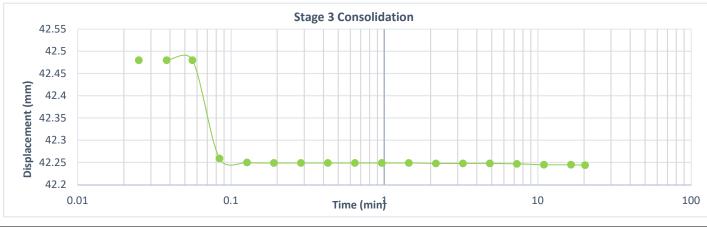
Client: Central Queensland Coal

Address: Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Project Name: CQ Coal Styx Basin Geotechnical Investigation Test Method


Location: STX1903G


Report Number: 19-5409A

Report Date: 12/11/2019
Order Number: -

Test Method **AS 1289.6.2.2**

Page 6

Sample/s supplied by Cardno Note: Graph not to scale

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740

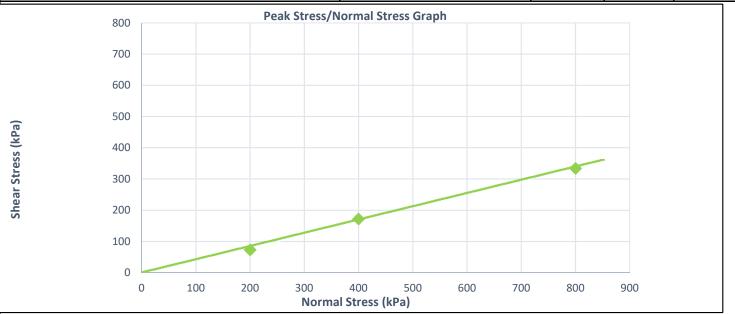
Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report

Client: Central Queensland Coal

Address: Level 17, 240 Queen Street, Brisbane, QLD

Project Number:


Project Name: CQ Coal Styx Basin Geotechnical Investigatid Test Method

Report Number: 19-5413 Report Date: 12/11/2019

Order Number:

AS 1289.6.2.2

Location:	on: STX1903G		Shear-91			Page 1			
Borehole:	STX1903G	Sample ID:	Shear-91	Depth From:	82.08	Depth To:	82.29		
Date Sample	d:		2/09/2019	Stage No		1	2	3	
Date Tested:			11/11/2019	Wet Density		2.27	2.32	2.44	
Sampled By:			Cardno	Dry Density		2.14	2.19	2.31	
Sampling Me	thod:	A	S 1289 1.2.1	Moisture (%)		6.0	6.0	5.6	
Moisture Met	hod:	A	S 1289.2.1.1	Normal Stress (k	kPa)	200	400	800	
Material Des	cription:	Carbonaced	us Siltstone	Peak Shear Stre	ss (kPa)	73	172	334	
Sample Type	:		Core	Primary Consolic	dation (mm)	0.2	0.4	0.4	
Lab Ref Num	ber:		19-5413	Strain Rate (mm	n/min)	0.131	0.116	0.113	

Effective Cohesion C' (kPa): 0.0 Effective Angle of Friction φ' (Degrees): 23.0 Failure Criteria: Peak Shear Stress

Sample/s supplied by Cardno Note: Graph not to scale

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report

Client: Central Queensland Coal

Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Address:

Project Name: CQ Coal Styx Basin Geotechnical Investigatio


Location: STX1903G

Report Number: 19-5413
Report Date: 12/11/2019

Order Number:

t Method **AS 1289.6.2.2**

Page 2

	Failure Details									
Stage No	Stage No Normal Stress (kPa)		Displacement at Failure (mm)	Test Duration (min)						
1	200	73	1.77	52						
2	400	172	1.31	53						
3	800	334	0.63	50						

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

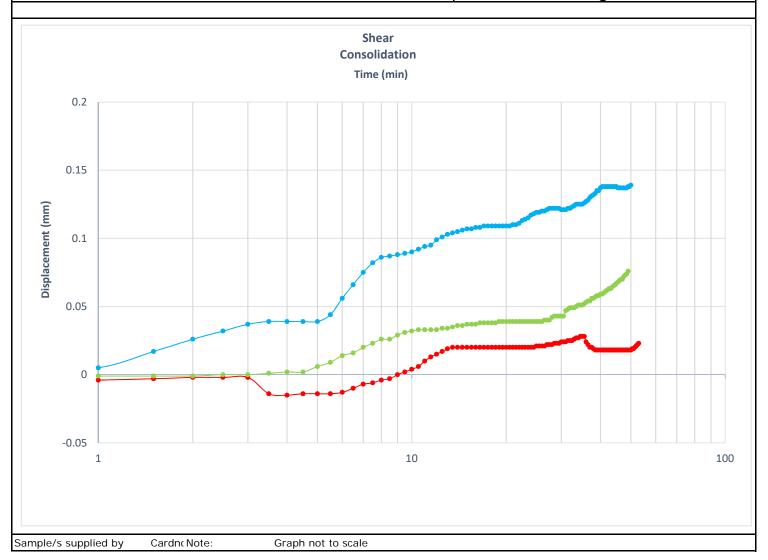
Direct Shear on Rock Report

Client: Central Queensland Coal

Address: Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Project Name: CQ Coal Styx Basin Geotechnical Investigatid Test Method


Location: STX1903G

Report Number: 19-5413
Report Date: 12/11/2019

Order Number:

est Method **AS 1289.6.2.2**

Page 3

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

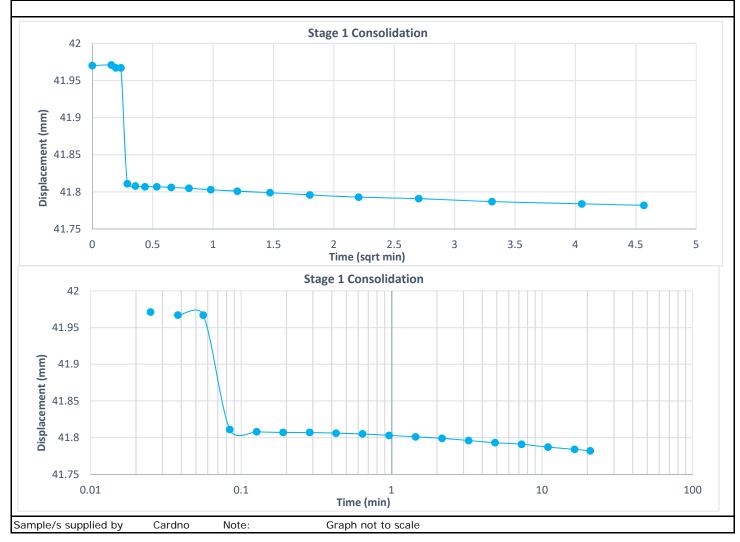
Direct Shear on Rock Report

Client: Central Queensland Coal

Address: Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Project Name: CQ Coal Styx Basin Geotechnical Investigation Test Method


Location: STX1903G

Report Number: 19-5413
Report Date: 12/11/2019

Order Number:

Test Method **AS 1289.6.2.2**

Page 4

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report

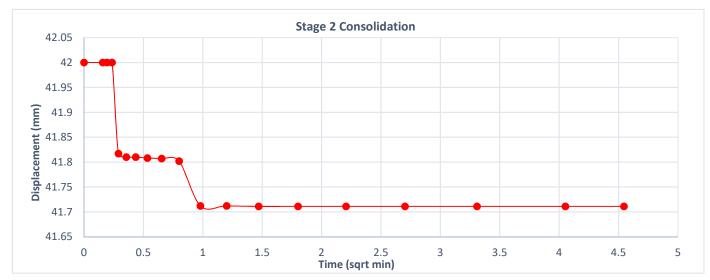
Client: Central Queensland Coal

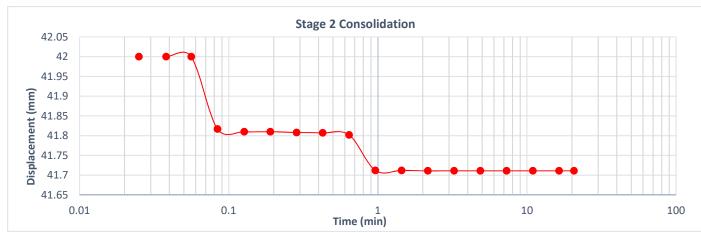
Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Address:

Project Name: CQ Coal Styx Basin Geotechnical Investigation Test Method


Location: STX1903G


Report Number: 19-5413
Report Date: 12/11/2019

Order Number:

Test Method **AS 1289.6.2.2**

Page 5

Sample/s supplied by Cardno Note: Graph not to scale

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

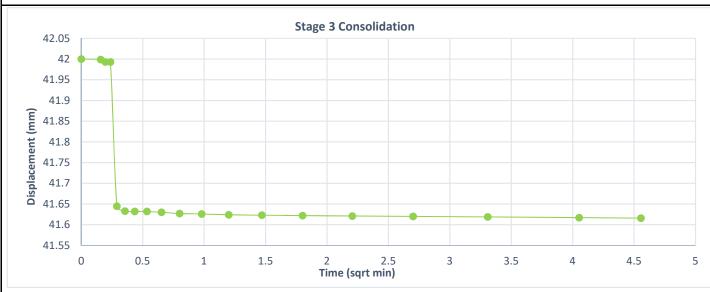
Direct Shear on Rock Report

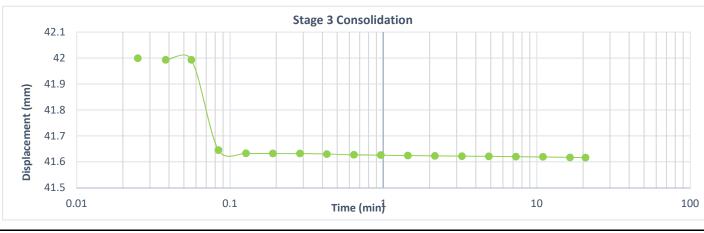
Client: Central Queensland Coal

Address: Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Project Name: CQ Coal Styx Basin Geotechnical Investigation Test Method


Location: STX1903G


Report Number: 19-5413

Report Date: 12/11/2019
Order Number: -

Test Method **AS 1289.6.2.2**

Page 6

Sample/s supplied by Cardno Note: Graph not to scale

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740

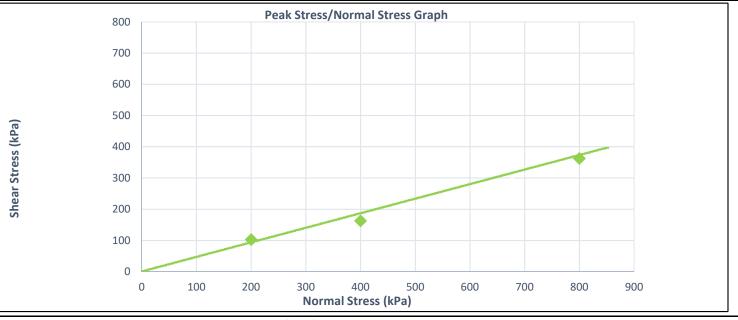
Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report

Client: Central Queensland Coal

Address: Level 17, 240 Queen Street, Brisbane, QLD

Project Number:


Project Name: CQ Coal Styx Basin Geotechnical Investigation Test Method

Report Number: 19-5430

Report Date: 12/11/2019 Order Number:

AS 1289.6.2.2

Borehole:STX1903GSample ID:Shear-108Depth From:106Date Sampled:2/09/2019Stage NoDate Tested:11/11/2019Wet Density	Page	Page 1		
' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	6.21 Depth To:	106.38		
Date Tested: 11/11/2019 Wet Density	1	2	3	
	2.19	2.18	2.20	
Sampled By: Cardno Dry Density	2.09	2.07	2.10	
Sampling Method: AS 1289 1.2.1 Moisture (%)	5.1	5.1	4.9	
Moisture Method: AS 1289.2.1.1 Normal Stress (kPa)	200	400	800	
Material Description: Siltstone Peak Shear Stress (k	kPa) 103	163	362	
Sample Type: Core Primary Consolidation	on (mm) 0.2	0.3	0.4	
Lab Ref Number: 19-5430 Strain Rate (mm/mir	in) 0.128	0.118	0.104	

Effective Cohesion C' (kPa): 0.0 Effective Angle of Friction φ' (Degrees): 25.0 Failure Criteria: Peak Shear Stress

Sample/s supplied by Cardno Note: Graph not to scale

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY JOHUNS

> Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report

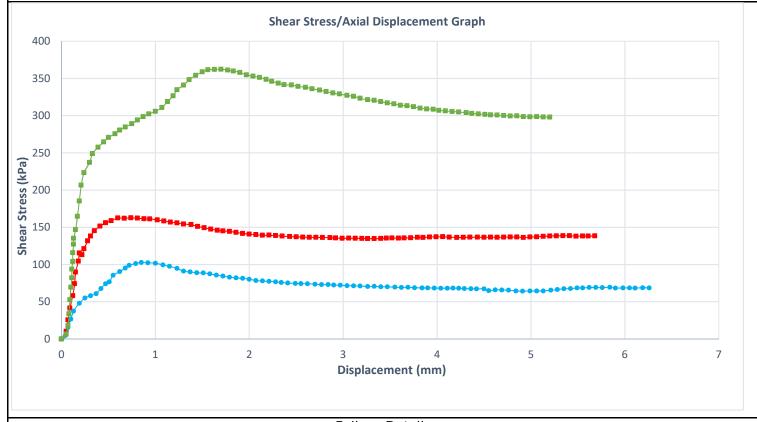
Client: Central Queensland Coal

Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Address:

Project Name: CQ Coal Styx Basin Geotechnical Investigation Test Method


Location: STX1903G

Report Number: 19-5430
Report Date: 12/11/2019

Order Number:

st Method **AS 1289.6.2.2**

Page 2

Failure Details									
Stage No	Normal Stress (kPa)	Peak Shear Stress (kPa)	Displacement at Failure (mm)	Test Duration (min)					
1	200	103	0.85	49					
2	400	163	0.74	46					
3	800	362	1.70	56					

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

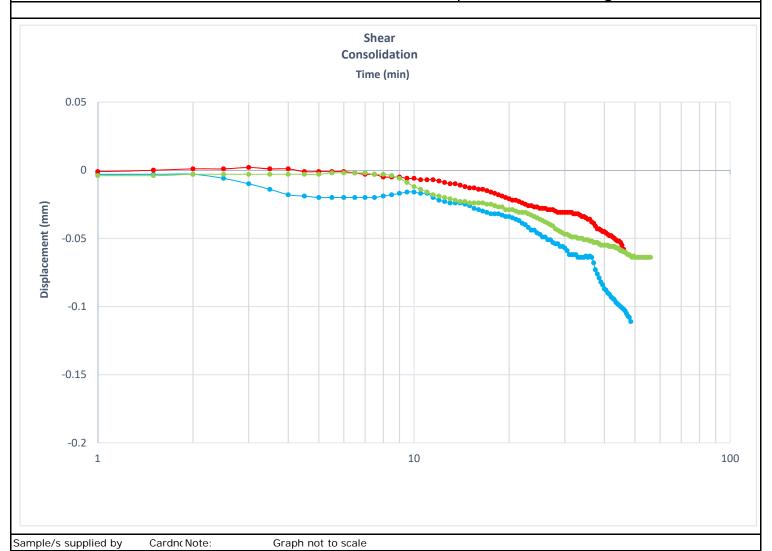
Direct Shear on Rock Report

Client: Central Queensland Coal

Address: Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Project Name: CQ Coal Styx Basin Geotechnical Investigation Test Method


Location: STX1903G

Report Number: 19-5430
Report Date: 12/11/2019

Order Number:

Test Method **AS 1289.6.2.2**

Page 3

NATA
WORLD RECOGNISED
ACCREDITATION

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

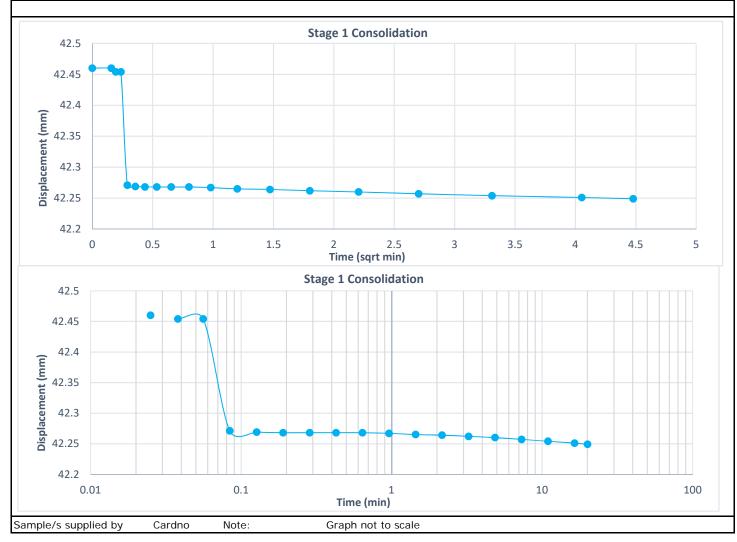
Direct Shear on Rock Report

Client: Central Queensland Coal

Address: Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Project Name: CQ Coal Styx Basin Geotechnical Investigation Test Method


Location: STX1903G

Report Number: 19-5430
Report Date: 12/11/2019

Order Number: -

Test Method **AS 1289.6.2.2**

Page 4

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report

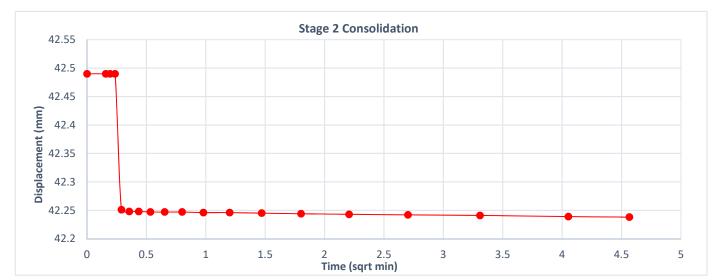
Client: Central Queensland Coal

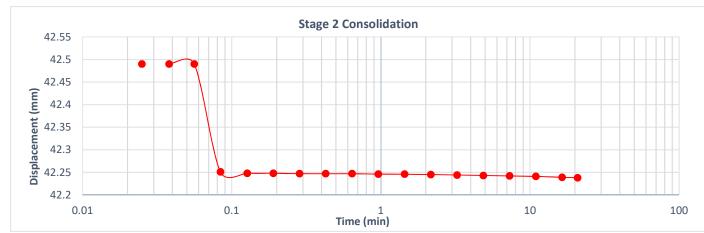
Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Address:

Project Name: CQ Coal Styx Basin Geotechnical Investigation Test Method


Location: STX1903G


Report Number: 19-5430
Report Date: 12/11/2019

Order Number:

Test Method **AS 1289.6.2.2**

Page 5

Sample/s supplied by Cardno Note: Graph not to scale

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

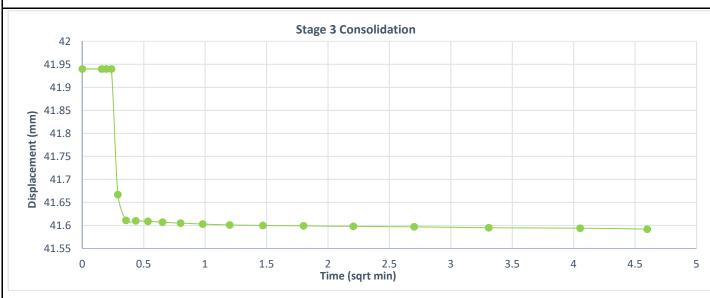
Direct Shear on Rock Report

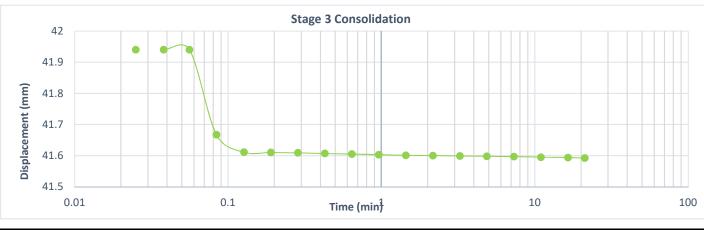
Client: Central Queensland Coal

Address: Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Project Name: CQ Coal Styx Basin Geotechnical Investigation Test Method


Location: STX1903G


Report Number: 19-5430
Report Date: 12/11/2019

Order Number: -

Test Method AS 1289.6.2.2

Page 6

Sample/s supplied by Cardno Note: Graph not to scale

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

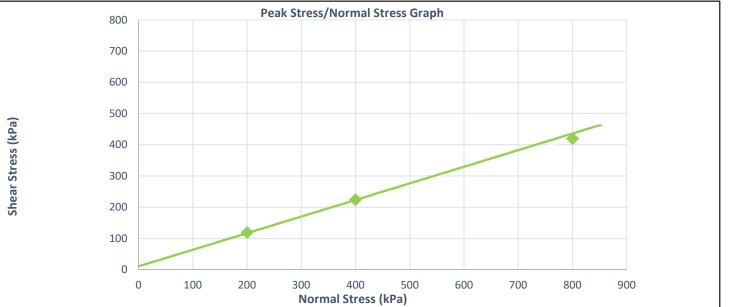
Direct Shear on Rock Report

Client: Central Queensland Coal

Address: Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Project Name: CQ Coal Styx Basin Geotechnical Investigatid Test Method


Location: STX1903G Shear-112

Report Number: 19-5434
Report Date: 12/11/2019

Order Number:

Test Method **AS 1289.6.2.2**

Location:	51X1903G		Snear-112			Page I			
Borehole:	STX1903G	Sample ID:	Shear-112	Depth From:	111.64	Depth To:	111.81		
Date Sample	d:		2/09/2019	Stage No		1	2	3	
Date Tested:			11/11/2019	Wet Density		2.35	2.43	2.31	
Sampled By:			Cardno	Dry Density		2.30	2.37	2.27	
Sampling Me	thod:	Į.	AS 1289 1.2.1	Moisture (%)		2.2	2.3	2.0	
Moisture Met	hod:	Į.	AS 1289.2.1.1	Normal Stress (I	kPa)	200	400	800	
Material Des	cription:	Carbonaceo	ous Siltstone	Peak Shear Stre	ss (kPa)	119	224	419	
Sample Type	:		Core	Primary Consolid	dation (mm)	0.1	0.1	0.2	
Lab Ref Num	ber:		19-5434	Strain Rate (mm	n/min)	0.124	0.106	0.094	

Effective Cohesion C' (kPa):

Effective Angle of Friction φ' (Degrees): Failure Criteria:

Cardn(Note: Graph not to scale

10.0 28.0

Peak Shear Stress

Sample/s supplied by

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report

Client: Central Queensland Coal

Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Address:

Project Name: CQ Coal Styx Basin Geotechnical Investigatio

Location: STX1903G

Report Number: 19-5434
Report Date: 12/11/2019

Order Number:

st Method **AS 1289.6.2.2**

Page 2

Failure Details									
Stage No	Normal Stress (kPa)	Peak Shear Stress (kPa)	Displacement at Failure (mm)	Test Duration (min)					
1	200	119	6.74	53					
2	400	224	4.53	51					
3	800	419	5.27	62					

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

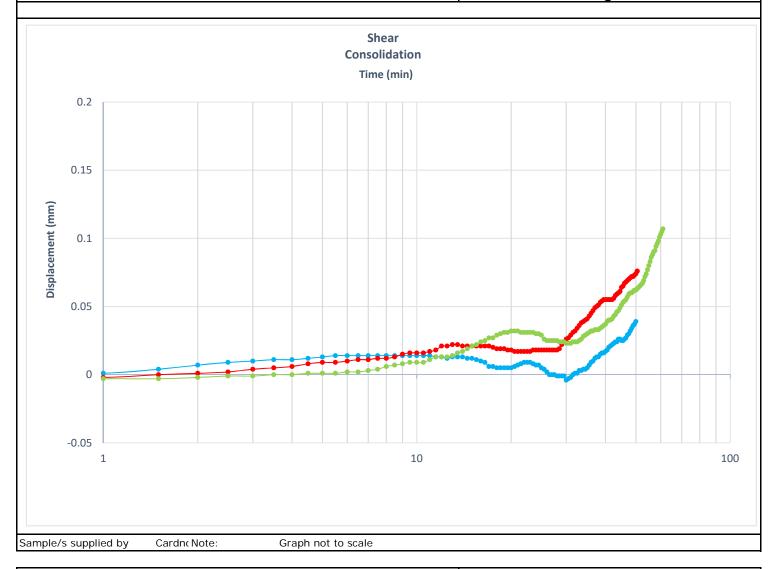
Direct Shear on Rock Report

Client: Central Queensland Coal

Address: Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Project Name: CQ Coal Styx Basin Geotechnical Investigatid Test Method


Location: STX1903G

Report Number: 19-5434
Report Date: 12/11/2019

Order Number:

Method **AS 1289.6.2.2**

Page 3

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

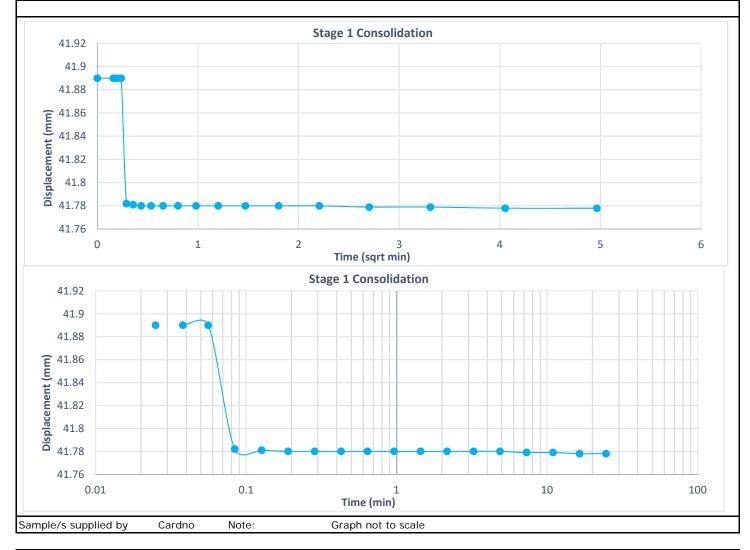
Direct Shear on Rock Report

Client: Central Queensland Coal

Address: Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Project Name: CQ Coal Styx Basin Geotechnical Investigation Test Method


Location: STX1903G

Report Number: 19-5434
Report Date: 12/11/2019

Order Number:

Test Method **AS 1289.6.2.2**

Page 4

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report

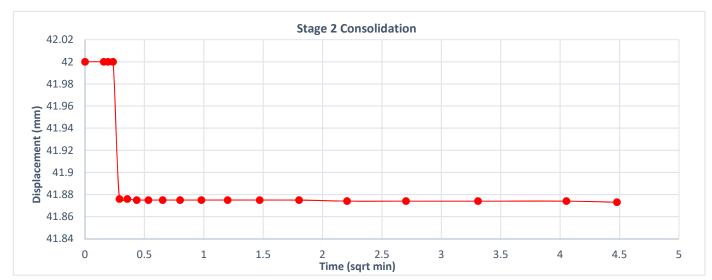
Client: Central Queensland Coal

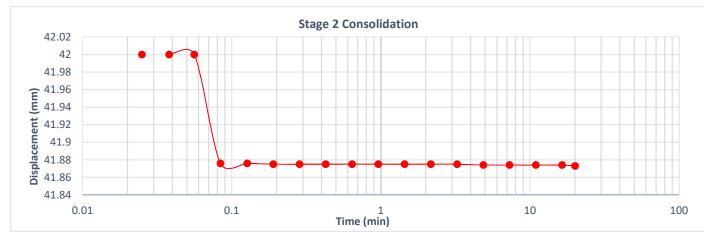
Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Address:

Project Name: CQ Coal Styx Basin Geotechnical Investigation Test Method


Location: STX1903G


Report Number: 19-5434
Report Date: 12/11/2019

Order Number:

Test Method **AS 1289.6.2.2**

Page 5

Sample/s supplied by Cardno Note: Graph not to scale

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

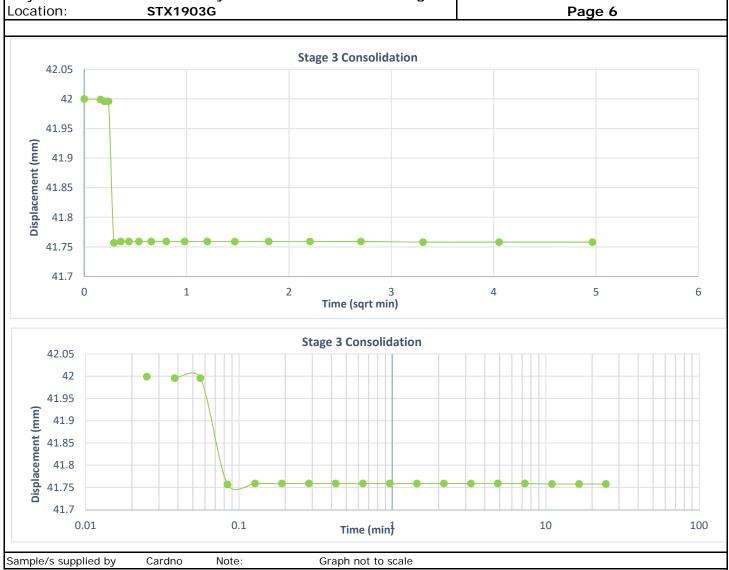
Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report

Client: Central Queensland Coal

Address: Level 17, 240 Queen Street, Brisbane, QLD


Project Number: M30863

Project Name: CQ Coal Styx Basin Geotechnical Investigation Test Method

Report Number: 19-5434
Report Date: 12/11/2019

Order Number:

Test Method **AS 1289.6.2.2**

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report

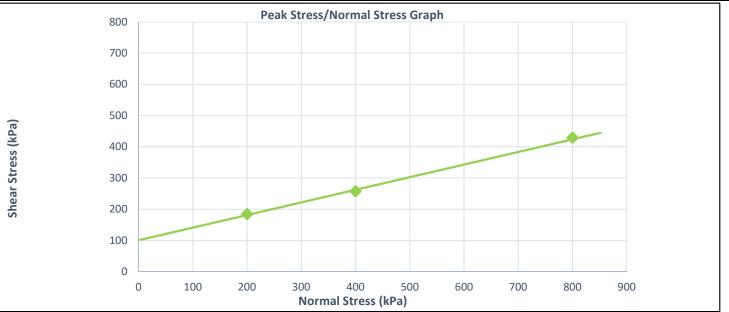
Client: Central Queensland Coal

Address: Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Project Name: CQ Coal Styx Basin Geotechnical Investigatid Test Method

Location: STX1903G Shear-119


Report Number: 19-5441A
Report Date: 14/11/2019

Order Number:

Test Method **AS 1289.6.2.2**

Page 1

Location.	Callon. 31x17030				rage		
Borehole: STX1903G	Sample ID:	Shear-119	Depth From:	124.68	Depth To:	124.9	
Date Sampled:		2/09/2019	Stage No		1	2	3
Date Tested:		12/11/2019	Wet Density		2.33	2.42	2.39
Sampled By:		Cardno	Dry Density		2.27	2.36	2.33
Sampling Method:	P	S 1289 1.2.1	Moisture (%)		2.8	2.6	2.8
Moisture Method:	P	S 1289.2.1.1	Normal Stress (F	kPa)	200	400	800
Material Description:	Interlaminated San	dstone and Siltstone	Peak Shear Stre	ss (kPa)	184	257	429
Sample Type:		Core	Primary Consolid	dation (mm)	0.3	0.2	0.4
Lab Ref Number:		19-5441A	Strain Rate (mm	n/min)	0.114	0.110	0.098

Effective Cohesion C' (kPa):

Effective Angle of Friction ϕ' (Degrees):

Failure Criteria: Peak Shear Stress

Sample/s supplied by Cardnc Note: Graph not to scale

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

100.0

22.0

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report

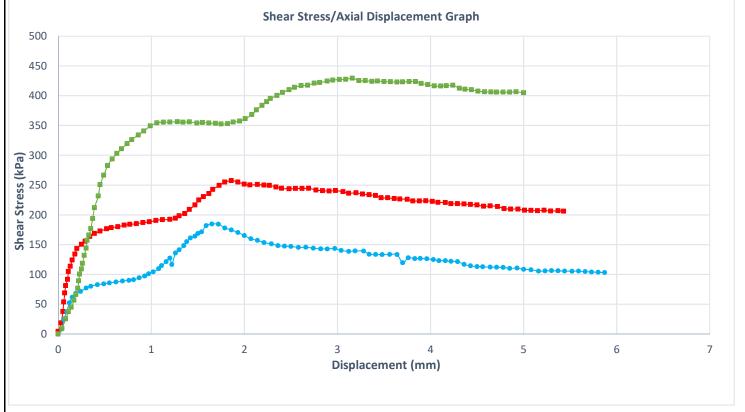
Client: Central Queensland Coal

Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Address:

Project Name: CQ Coal Styx Basin Geotechnical Investigatio


Location: STX1903G

Report Number: 19-5441A
Report Date: 14/11/2019

Order Number:

t Method **AS 1289.6.2.2**

Page 2

Failure Details									
Stage No	Normal Stress (kPa)	Peak Shear Stress (kPa)	Displacement at Failure (mm)	Test Duration (min)					
1	200	184	1.65	54					
2	400	257	1.86	53					
3	800	429	3.16	60					

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

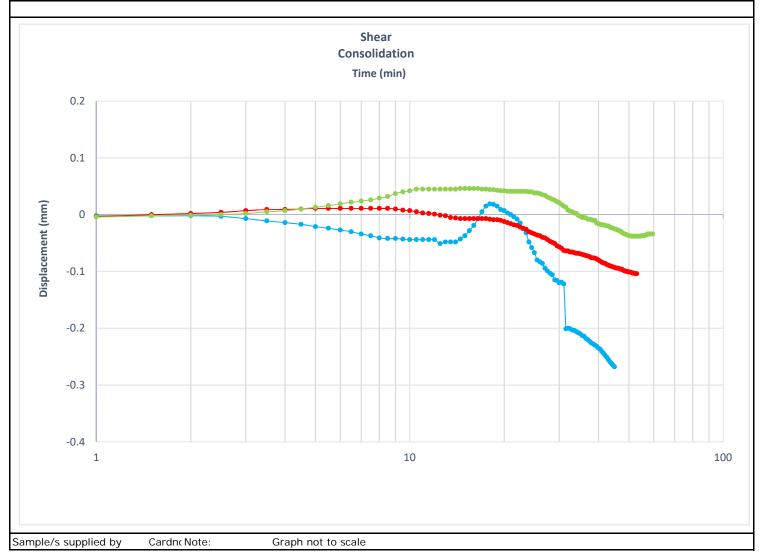
Direct Shear on Rock Report

Client: Central Queensland Coal

Address: Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Project Name: CQ Coal Styx Basin Geotechnical Investigatid Test Method


Location: STX1903G

Report Number: 19-5441A
Report Date: 14/11/2019

Order Number:

st Method **AS 1289.6.2.2**

Page 3

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

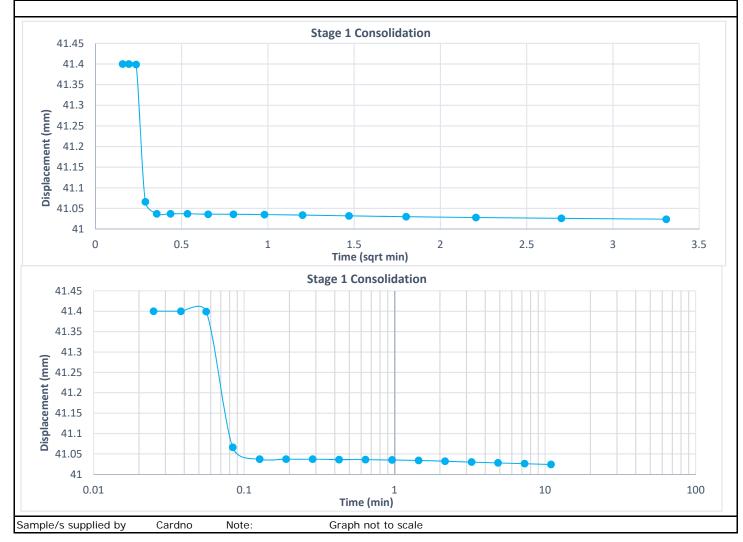
Direct Shear on Rock Report

Client: Central Queensland Coal

Address: Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Project Name: CQ Coal Styx Basin Geotechnical Investigation Test Method


Location: STX1903G

Report Number: 19-5441A
Report Date: 14/11/2019

Order Number:

Test Method AS 1289.6.2.2

Page 4

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report

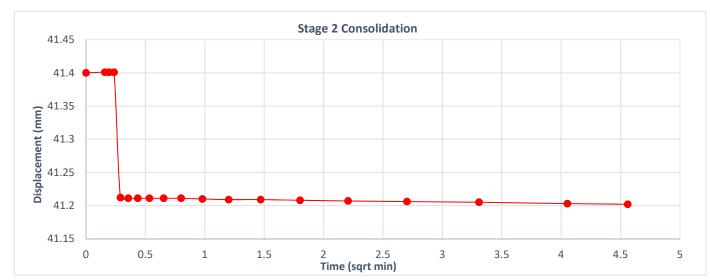
Client: Central Queensland Coal

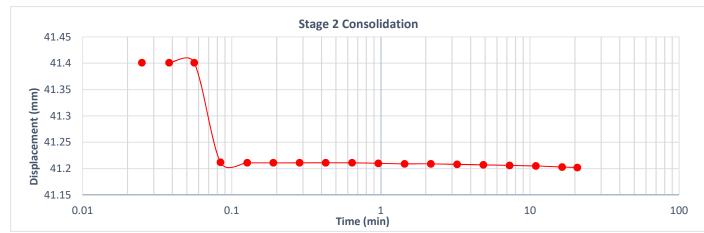
Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Address:

Project Name: CQ Coal Styx Basin Geotechnical Investigation Test Method


Location: STX1903G


Report Number: 19-5441A
Report Date: 14/11/2019

Order Number:

Test Method **AS 1289.6.2.2**

Page 5

Sample/s supplied by Cardno Note: Graph not to scale

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

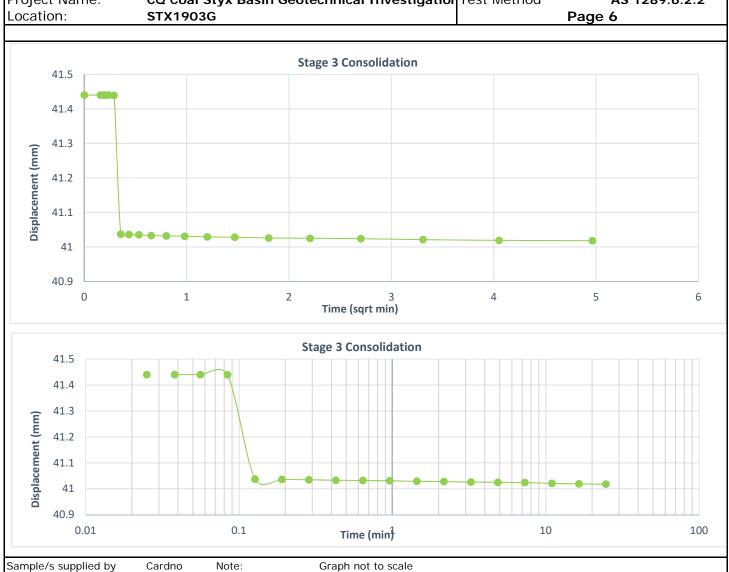
71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740

Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report

Client: **Central Queensland Coal**

Address: Level 17, 240 Queen Street, Brisbane, QLD


Project Number:

Project Name: CQ Coal Styx Basin Geotechnical Investigation Test Method

Report Number: 19-5441A Report Date: 14/11/2019

Order Number:

AS 1289.6.2.2

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

CARDNO (QLD) PTY LTD 71 MAGGIOLO DRIVE MACKAY QLD

REPORT ON POINT LOAD STRENGTH INDEX

Sheet 1 of 6 Mackay Laboratory CLIENT: Central Queensland Coal JOB NO.: M30863 LAB REF NO: Refer below

ADDRESS: Level 17, 240 Queen Street, Brisbane Qld 4000

PROJECT: CQ Coal Styx Basin geotechnical Investigation 02-Sep-19 **SAMPLED BY:** Cardno **SAMPLE DATE:**

LOCATION: Styx Basin **TEST PROCEDURE:**

AS4133.4.1 (2007)

TESTED BY: MS **TEST DATE:** 21-Oct-19 **CHECKED BY:** AW **CHECK DATE:** 22-Oct-19

Lab Ref No	Borehole	Material / Client sample Ref'	Depth From (m)	Depth To (m)	Test Type	D (mm)	P (kN)	I _{s (50)} (Mpa)	Rock Strength
19-5329A	STX1903G	PL-7	27.19	27.30	Diametral	60	0.90	0.27	LOW
19-5329B	STX1903G	PL-7	27.19	27.30	Axial	31	1.00	0.41	MEDIUM
19-5330A	STX1903G	PL-8	26.84	26.96	Diametral	61	0.10	0.03	EXTREMELY LOW
19-5330B	STX1903G	PL-8	26.84	26.96	Axial	33	0.40	0.16	LOW
19-5332A	STX1903G	pl-10	28.01	28.11	Diametral	61	0.60	0.18	LOW
19-5332B	STX1903G	pl-10	28.01	28.11	Axial	32	1.30	0.53	MEDIUM
19-5333A	STX1903G	pl-11	28.55	28.65	Diametral	61	0.80	0.24	LOW
19-5333B	STX1903G	pl-11	28.55	28.65	Axial	32	1.20	0.48	MEDIUM
19-5334A	STX1903G	pl-12	29.25	29.34	Diametral	61	0.70	0.21	LOW
19-5334B	STX1903G	pl-12	29.25	29.34	Axial	-	-	-	-
19-5336A	STX1903G	pl-14	30.00	30.07	Diametral	61	6.00	1.77	HIGH
19-5336B	STX1903G	pl-14	30.00	30.07	Axial	-	-	-	-
19-5337A	STX1903G	pl-15	30.07	30.17	Diametral	61	0.60	0.18	LOW
19-5337B	STX1903G	pl-15	30.07	30.17	Axial	31	1.00	0.41	MEDIUM
19-5338A	STX1903G	pl-17	31.21	31.35	Diametral	61	0.80	0.24	LOW
19-5338B	STX1903G	pl-17	31.21	31.35	Axial	31	0.90	0.37	MEDIUM
19-5340A	STX1903G	pl-18	32.30	32.41	Diametral	61	0.60	0.18	LOW
19-5340B	STX1903G	pl-18	32.30	32.41	Axial	32	0.80	0.32	MEDIUM
19-5341A	STX1903G	pl-19	32.54	32.67	Diametral	61	0.50	0.15	LOW
19-5341B	STX1903G	pl-19	32.54	32.67	Axial	31	0.60	0.24	LOW
19-5342A	STX1903G	pl-20	32.88	33.02	Diametral	61	0.20	0.06	VERY LOW
19-5342B	STX1903G	pl-20	32.88	33.02	Axial	32	0.80	0.32	MEDIUM
19-5344A	STX1903G	pl-22	33.27	33.46	Diametral	61	0.70	0.21	LOW
19-5344B	STX1903G	pl-22	33.27	33.46	Axial	32	0.90	0.36	MEDIUM
19-5347A	STX1903G	pl-25	36.23	36.40	Diametral	61	0.50	0.15	LOW
19-5347B	STX1903G	pl-25	36.23	36.40	Axial	31	1.20	0.50	MEDIUM
19-5350A	STX1903G	pl-27	36.96	37.17	Diametral	61	0.60	0.18	LOW
19-5350B	STX1903G	pl-27	36.96	37.17	Axial	32	2.30	0.93	MEDIUM
19-5351A	STX1903G	pl-28	37.65	37.76	Diametral	61	1.00	0.30	LOW
19-5351B	STX1903G	pl-28	37.65	37.76	Axial	32	1.60	0.65	MEDIUM

Notes: Moisture contents of each specimen was not determined.

910 Accredited No. Certificate No. 19-5329A Date of Issue: 22-Oct-19

Accredited for compliance with ISO/IEC 17025-testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australia/national standards.

CARDNO (QLD) PTY LTD 71 MAGGIOLO DRIVE MACKAY QLD

REPORT ON POINT LOAD STRENGTH INDEX

Sheet 2 of 6 Mackay Laboratory

CLIENT: Central Queensland Coal JOB NO.: M30863 LAB REF NO: Refer below

ADDRESS: Level 17, 240 Queen Street, Brisbane Qld 4000

AS4133.4.1 (2007)

PROJECT: CQ Coal Styx Basin geotechnical Investigation SAMPLED BY: Cardno SAMPLE DATE: 02-Sep-19

LOCATION: Styx Basin **TEST PROCEDURE:**

 TESTED BY:
 MS
 TEST DATE:
 21-Oct-19

 CHECKED BY:
 AW
 CHECK DATE:
 22-Oct-19

Lab Ref No	Borehole	Material / Client sample Ref'	Depth From (m)	Depth To (m)	Test Type	D (mm)	P (kN)	I _{s (50)} (Mpa)	Rock Strength
19-5351A	STX1903G	pl-29	38.20	38.37	Diametral	61	1.00	0.30	LOW
19-5351B	STX1903G	pl-29	38.20	38.37	Axial	32	1.60	0.65	MEDIUM
19-5354A	STX1903G	pl-32	39.91	40.02	Diametral	61	5.20	1.53	HIGH
19-5354B	STX1903G	pl-32	39.91	40.02	Axial	31	8.90	3.64	VERY HIGH
19-5355A	STX1903G	pl-33	40.04	40.14	Diametral	61	0.60	0.18	LOW
19-5355B	STX1903G	pl-33	40.04	40.14	Axial	31	1.40	0.57	MEDIUM
19-5357A	STX1903G	pl-35	41.66	41.78	Diametral	61	0.90	0.26	LOW
19-5357B	STX1903G	pl-35	41.66	41.78	Axial	32	1.30	0.53	MEDIUM
19-5358A	STX1903G	pl-36	42.60	42.73	Diametral	61	0.50	0.15	LOW
19-5358B	STX1903G	pl-36	42.60	42.73	Axial	31	1.30	0.53	MEDIUM
19-5361A	STX1903G	pl-39	43.97	44.09	Diametral	61	0.60	0.18	LOW
19-5361B	STX1903G	pl-39	43.97	44.09	Axial	31	3.70	1.52	HIGH
19-5362A	STX1903G	pl-40	45.22	45.38	Diametral	61	2.80	0.82	MEDIUM
19-5362B	STX1903G	pl-40	45.22	45.38	Axial	31	4.80	1.99	HIGH
19-5363A	STX1903G	pl-41	46.57	46.68	Diametral	61	1.00	0.29	LOW
19-5363B	STX1903G	pl-41	46.57	46.68	Axial	31	1.30	0.53	MEDIUM
19-5365A	STX1903G	pl-43	48.01	48.14	Diametral	61	1.90	0.56	MEDIUM
19-5365B	STX1903G	pl-43	48.01	48.14	Axial	31	2.00	0.83	MEDIUM
19-5368A	STX1903G	pl-46	49.22	49.32	Diametral	61	0.20	0.06	VERY LOW
19-5368B	STX1903G	pl-46	49.22	49.32	Axial	32	1.80	0.72	MEDIUM
19-5369A	STX1903G	pl-47	49.75	49.87	Diametral	61	0.90	0.26	LOW
19-5369B	STX1903G	pl-47	49.75	49.87	Axial	32	3.00	1.22	HIGH
19-5370A	STX1903G	pl-48	50.25	50.37	Diametral	61	0.80	0.23	LOW
19-5370B	STX1903G	pl-48	50.25	50.37	Axial	32	1.40	0.57	MEDIUM
19-5372A	STX1903G	pl-50	51.17	51.27	Diametral	61	1.60	0.47	MEDIUM
19-5372B	STX1903G	pl-50	51.17	51.27	Axial	32	1.60	0.65	MEDIUM
19-5375A	STX1903G	pl-53	54.05	54.17	Diametral	61	0.70	0.21	LOW
19-5375B	STX1903G	pl-53	54.05	54.17	Axial	31	1.50	0.62	MEDIUM
19-5376A	STX1903G	pl-54	55.05	55.18	Diametral	61	3.50	1.03	HIGH
19-5376B	STX1903G	pl-54	55.05	55.18	Axial	31	5.10	2.13	HIGH

Notes: Moisture contents of each specimen was not determined.

Accredited No. 910
Certificate No. 19-5351A
Date of Issue: 22-Oct-19

Accredited for compliance with ISO/IEC 17025-testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australia/national standards.

CARDNO (QLD) PTY LTD

71 MAGGIOLO DRIVE MACKAY QLD

REPORT ON POINT LOAD STRENGTH INDEX

Sheet 3 of 6 Mackay Laboratory CLIENT: Central Queensland Coal JOB NO.: M30863 LAB REF NO: Refer below

ADDRESS: Level 17, 240 Queen Street, Brisbane Qld 4000

02-Sep-19 PROJECT: CQ Coal Styx Basin geotechnical Investigation **SAMPLED BY:** Cardno **SAMPLE DATE: TESTED BY:** MS **TEST DATE:** 21-Oct-19

LOCATION: Styx Basin

TEST PROCEDURE: AS4133.4.1 (2007) **CHECKED BY:** AW **CHECK DATE:** 22-Oct-19

Lab Ref No	Borehole	Material / Client sample Ref'	Depth From (m)	Depth To (m)	Test Type	D (mm)	P (kN)	I _{s (50)} (Mpa)	Rock Strength
19-5377A	STX1903G	pl-55	55.81	55.91	Diametral	61	0.10	0.03	EXTREMELY LOW
19-5377B	STX1903G	pl-55	55.81	55.91	Axial	31	0.20	0.08	VERY LOW
19-5378A	STX1903G	pl-56	56.20	56.74	Diametral	61	4.60	1.35	HIGH
19-5378B	STX1903G	pl-56	56.20	56.74	Axial	31	5.50	2.27	HIGH
19-5381A	STX1903G	pl-59	59.20	59.37	Diametral	61	1.00	0.29	LOW
19-5381B	STX1903G	pl-59	59.20	59.37	Axial	32	2.20	0.89	MEDIUM
19-5382A	STX1903G	pl-60	59.70	59.87	Diametral	61	0.60	0.18	LOW
19-5382B	STX1903G	pl-60	59.70	59.87	Axial	31	0.80	0.33	MEDIUM
19-5383A	STX1903G	pl-61	60.15	60.25	Diametral	61	0.40	0.12	LOW
19-5383B	STX1903G	pl-61	60.15	60.25	Axial	31	0.50	0.21	LOW
19-5384A	STX1903G	pl-62	60.48	60.60	Diametral	61	0.01	0.00	EXTREMELY LOW
19-5384B	STX1903G	pl-62	60.48	60.60	Axial	32	0.60	0.24	LOW
19-5385A	STX1903G	pl-63	61.25	61.40	Diametral	61	0.70	0.21	LOW
19-5385B	STX1903G	pl-63	61.25	61.40	Axial	31	1.80	0.75	MEDIUM
19-5386A	STX1903G	pl-64	62.06	62.17	Diametral	61	0.70	0.21	LOW
19-5386B	STX1903G	pl-64	62.06	62.17	Axial	31	0.80	0.33	MEDIUM
19-5388A	STX1903G	pl-66	62.73	62.84	Diametral	61	0.40	0.12	LOW
19-5388B	STX1903G	pl-66	62.73	62.84	Axial	32	0.70	0.28	LOW
19-5390A	STX1903G	pl-68	64.34	64.56	Diametral	61	1.10	0.32	MEDIUM
19-5390B	STX1903G	pl-68	64.34	64.56	Axial	31	3.30	1.34	HIGH
19-5391A	STX1903G	pl-69	65.26	65.34	Diametral	61	2.20	0.65	MEDIUM
19-5391B	STX1903G	pl-69	65.26	65.34	Axial	31	2.70	1.11	HIGH
19-5392A	STX1903G	pl-70	66.20	66.29	Diametral	61	1.10	0.32	MEDIUM
19-5392B	STX1903G	pl-70	66.20	66.29	Axial	31	5.80	2.37	HIGH
19-5393A	STX1903G	pl-71	67.20	67.30	Diametral	61	0.30	0.09	VERY LOW
19-5393B	STX1903G	pl-71	67.20	67.30	Axial	33	3.40	1.34	HIGH
19-5394A	STX1903G	pl-73	67.83	67.97	Diametral	61	0.20	0.06	VERY LOW
19-5394B	STX1903G	pl-73	67.83	67.97	Axial	31	2.00	0.82	MEDIUM
19-5395A	STX1903G	pl-72	68.95	69.08	Diametral	61	0.10	0.03	EXTREMELY LOW
19-5395B	STX1903G	pl-72	68.95	69.08	Axial	33	1.50	0.59	MEDIUM

Notes: Moisture contents of each specimen was not determined.

910 Accredited No. Certificate No. 19-5377A Date of Issue: 22-Oct-19

Accredited for compliance with ISO/IEC 17025-testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australia/national standards.

Sheet 4 of 6

CARDNO (QLD) PTY LTD 71 MAGGIOLO DRIVE MACKAY QLD

REPORT ON POINT LOAD STRENGTH INDEX

Mackay Laboratory

CLIENT: Central Queensland Coal JOB NO.: M30863 LAB REF NO: Refer below

ADDRESS: Level 17, 240 Queen Street, Brisbane Qld 4000

02-Sep-19 PROJECT: CQ Coal Styx Basin geotechnical Investigation **SAMPLED BY:** Cardno **SAMPLE DATE: TESTED BY:** MS **TEST DATE:** 21-Oct-19

LOCATION: Styx Basin

TEST PROCEDURE: AS4133.4.1 (2007) **CHECKED BY:** AW **CHECK DATE:** 22-Oct-19

Lab Ref No	Borehole	Material / Client sample Ref'	Depth From (m)	Depth To (m)	Test Type	D (mm)	P (kN)	I _{s (50)} (Mpa)	Rock Strength
19-5397A	STX1903G	pl-75	70.05	70.14	Diametral	61	0.70	0.21	LOW
19-5397B	STX1903G	pl-75	70.05	70.14	Axial	32	0.30	0.12	LOW
19-5398A	STX1903G	pl-76	71.60	71.70	Diametral	61	0.20	0.06	VERY LOW
19-5398B	STX1903G	pl-76	71.60	71.70	Axial	32	0.70	0.28	LOW
19-5400A	STX1903G	pl-78	72.81	72.93	Diametral	61	0.05	0.01	EXTREMELY LOW
19-5400B	STX1903G	pl-78	72.81	72.93	Axial	33	0.50	0.20	LOW
19-5401A	STX1903G	pl-79	74.03	74.18	Diametral	61	1.00	0.29	LOW
19-5401B	STX1903G	pl-79	74.03	74.18	Axial	33	1.30	0.51	MEDIUM
19-5402A	STX1903G	pl-80	74.18	74.29	Diametral	61	1.00	0.29	LOW
19-5402B	STX1903G	pl-80	74.18	74.29	Axial	33	0.50	0.20	LOW
19-5403A	STX1903G	pl-81	75.07	75.20	Diametral	61	0.20	0.06	VERY LOW
19-5403B	STX1903G	pl-81	75.07	75.20	Axial	32	0.20	0.08	VERY LOW
19-5406A	STX1903G	pl-84	77.82	77.91	Diametral	61	0.10	0.03	EXTREMELY LOW
19-5406B	STX1903G	pl-84	77.82	77.91	Axial	32	0.40	0.16	LOW
19-5407A	STX1903G	pl-85	76.68	76.83	Diametral	61	5.60	1.64	HIGH
19-5407B	STX1903G	pl-85	76.68	76.83	Axial	31	6.90	2.81	HIGH
19-5408A	STX1903G	pl-86	76.26	76.39	Diametral	61	1.00	0.29	LOW
19-5408B	STX1903G	pl-86	76.26	76.39	Axial	33	4.40	1.73	HIGH
19-5411A	STX1903G	pl-89	81.76	81.90	Diametral	61	0.40	0.12	LOW
19-5411B	STX1903G	pl-89	81.76	81.90	Axial	33	0.30	0.12	LOW
19-5414A	STX1903G	pl-92	82.72	82.84	Diametral	61	1.00	0.29	LOW
19-5414B	STX1903G	pl-92	82.72	82.84	Axial	31	1.70	0.69	MEDIUM
19-5415A	STX1903G	pl-93	83.39	83.48	Diametral	61	0.50	0.15	LOW
19-5415B	STX1903G	pl-93	83.39	83.48	Axial	31	1.10	0.45	MEDIUM
19-5416A	STX1903G	pl-94	83.90	84.01	Diametral	61	0.30	0.09	VERY LOW
19-5416B	STX1903G	pl-94	83.90	84.01	Axial	31	0.90	0.37	MEDIUM
19-5417A	STX1903G	pl-95	87.75	87.90	Diametral	61	0.80	0.24	LOW
19-5417B	STX1903G	pl-95	87.75	87.90	Axial	31	0.70	0.29	LOW
19-5418A	STX1903G	pl-96	88.60	88.72	Diametral	61	0.10	0.03	EXTREMELY LOW
19-5418B	STX1903G	pl-96	88.60	88.72	Axial	32	0.40	0.16	LOW

Notes: Moisture contents of each specimen was not determined.

910 Accredited No. Certificate No. 19-5397A Date of Issue: 22-Oct-19

Accredited for compliance with ISO/IEC 17025-testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australia/national standards.

CARDNO (QLD) PTY LTD

71 MAGGIOLO DRIVE MACKAY QLD

REPORT ON POINT LOAD STRENGTH INDEX

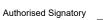
Sheet 5 of 6 Mackay Laboratory CLIENT: Central Queensland Coal JOB NO.: M30863 LAB REF NO: Refer below

ADDRESS: Level 17, 240 Queen Street, Brisbane Qld 4000

PROJECT: CQ Coal Styx Basin geotechnical Investigation 02-Sep-19 **SAMPLED BY: SAMPLE DATE:** Cardno **TESTED BY:** MS **TEST DATE:** 21-Oct-19

LOCATION: Styx Basin

TEST PROCEDURE: AS4133.4.1 (2007) **CHECKED BY:** AW **CHECK DATE:** 22-Oct-19


Lab Ref No	Borehole	Material / Client sample Ref'	Depth From (m)	Depth To (m)	Test Type	D (mm)	P (kN)	I _{s (50)} (Mpa)	Rock Strength
19-5419A	STX1903G	pl-97	88.72	88.82	Diametral	61	1.10	0.32	MEDIUM
19-5419B	STX1903G	pl-97	88.72	88.82	Axial	32	3.80	1.53	HIGH
19-5421A	STX1903G	pl-99	90.11	90.24	Diametral	61	1.90	0.56	MEDIUM
19-5421B	STX1903G	pl-99	90.11	90.24	Axial	31	5.40	2.24	HIGH
19-5423A	STX1903G	pl-101	91.88	92.00	Diametral	61	5.20	1.53	HIGH
19-5423B	STX1903G	pl-101	91.88	92.00	Axial	32	12.40	4.97	VERY HIGH
19-5424A	STX1903G	pl-102	95.28	95.40	Diametral	61	0.03	0.01	EXTREMELY LOW
19-5424B	STX1903G	pl-102	95.28	95.40	Axial	32	0.80	0.32	MEDIUM
19-5426A	STX1903G	pl-104	95.81	95.92	Diametral	61	0.50	0.15	LOW
19-5426B	STX1903G	pl-104	95.81	95.92	Axial	32	2.20	0.88	MEDIUM
19-5427A	STX1903G	pl-105	99.69	99.82	Diametral	61	7.50	2.21	HIGH
19-5427B	STX1903G	pl-105	99.69	99.82	Axial	33	4.90	1.92	HIGH
19-5429A	STX1903G	pl-106	100.41	100.54	Diametral	61	0.90	0.26	LOW
19-5429B	STX1903G	pl-106	100.41	100.54	Axial	32	3.40	1.36	HIGH
19-5432A	STX1903G	pl-110	107.36	107.47	Diametral	61	0.50	0.15	LOW
19-5432B	STX1903G	pl-110	107.36	107.47	Axial	32	1.70	0.68	MEDIUM
19-5435A	STX1903G	pl-113	114.08	114.22	Diametral	61	0.20	0.06	VERY LOW
19-5435B	STX1903G	pl-113	114.08	114.22	Axial	32	1.60	0.65	MEDIUM
19-5436A	STX1903G	pl-114	118.84	118.98	Diametral	61	0.02	0.01	EXTREMELY LOW
19-5436B	STX1903G	pl-114	118.84	118.98	Axial	33	0.40	0.16	LOW
19-5437A	STX1903G	pl-115	119.54	119.68	Diametral	61	2.10	0.62	MEDIUM
19-5437B	STX1903G	pl-115	119.54	119.68	Axial	32	5.10	2.04	HIGH
19-5439A	STX1903G	pl-117	120.39	120.47	Diametral	61	0.01	0.00	EXTREMELY LOW
19-5439B	STX1903G	pl-117	120.39	120.47	Axial	31	0.01	0.00	EXTREMELY LOW
19-5442A	STX1903G	pl-120	131.16	131.29	Diametral	61	0.08	0.02	EXTREMELY LOW
19-5442B	STX1903G	pl-120	131.16	131.29	Axial	33	1.40	0.55	MEDIUM
19-5444A	STX1903G	pl-122	132.18	132.30	Diametral	61	0.01	0.00	EXTREMELY LOW
19-5444B	STX1903G	pl-122	132.18	132.30	Axial	32	4.30	1.71	HIGH
19-5445A	STX1903G	pl-123	129.19	130.01	Diametral	61	0.10	0.03	EXTREMELY LOW
19-5445B	STX1903G	pl-123	129.19	130.01	Axial	32	1.40	0.56	MEDIUM

Notes: Moisture contents of each specimen was not determined.

910 Accredited No. Certificate No. 19-5419A Date of Issue: 22-Oct-19

Accredited for compliance with ISO/IEC 17025-testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australia/national standards.

CARDNO (QLD) PTY LTD

71 MAGGIOLO DRIVE MACKAY QLD

REPORT ON POINT LOAD STRENGTH INDEX

Sheet 6 of 6 Mackay Laboratory CLIENT: Central Queensland Coal JOB NO.: M30863 LAB REF NO: Refer below

ADDRESS: Level 17, 240 Queen Street, Brisbane Qld 4000

02-Sep-19 PROJECT: CQ Coal Styx Basin geotechnical Investigation **SAMPLED BY:** Cardno **SAMPLE DATE: TESTED BY:** MS **TEST DATE:** 21-Oct-19

LOCATION: Styx Basin

TEST PROCEDURE: AS4133.4.1 (2007) **CHECKED BY:** AW **CHECK DATE:** 22-Oct-19

Lab Ref No	Borehole	Material / Client sample Ref'	Depth From (m)	Depth To (m)	Test Type	D (mm)	P (kN)	I _{s (50)} (Mpa)	Rock Strength
19-5446A	STX1903G	pl-124	132.80	132.92	Diametral	61	3.90	1.15	HIGH
19-5446B	STX1903G	pl-124	132.80	132.92	Axial	32	6.90	2.79	HIGH
19-5448A	STX1903G	pl-126	133.89	134.01	Diametral	61	2.60	0.76	MEDIUM
19-5448B	STX1903G	pl-126	133.89	134.01	Axial	31	7.40	3.01	VERY HIGH
19-5449A	STX1903G	pl-127	134.87	135.40	Diametral	61	8.30	2.43	HIGH
19-5449B	STX1903G	pl-127	134.87	135.40	Axial	31	10.30	4.25	VERY HIGH
19-5450A	STX1903G	pl-128	145.00	145.45	Diametral	61	1.60	0.47	MEDIUM
19-5450B	STX1903G	pl-128	145.00	145.45	Axial	32	0.90	0.36	MEDIUM
19-5452A	STX1903G	pl-130	146.20	146.32	Diametral	60	0.60	0.18	LOW
19-5452B	STX1903G	pl-130	146.20	146.32	Axial	32	1.80	0.72	MEDIUM
19-5453A	STX1903G	pl-131	144.32	144.45	Diametral	61	0.10	0.03	EXTREMELY LOW
19-5453B	STX1903G	pl-131	144.32	144.45	Axial	32	2.20	0.88	MEDIUM
19-5454A	STX1903G	pl-132	147.15	147.28	Diametral	61	1.60	0.47	MEDIUM
19-5454B	STX1903G	pl-132	147.15	147.28	Axial	32	2.50	1.01	HIGH

Notes: Moisture contents of each specimen was not determined.

Accredited No. 910 Certificate No. 19-5446A Date of Issue: 22-Oct-19

Accredited for compliance with ISO/IEC 17025-testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australia/national standards.

Authorised Signatory

CARDNO (QLD) PTY LTD

71 MAGGIOLO DRIVE MACKAY QLD

REPORT ON SLAKE DURABILITY INDEX OF ROCK

Sheet 1 of 1

CLIENT: Central Queensland Coal

Mackay Laboratory

Mackay Laboratory

Mackay Laboratory

Mackay Laboratory

Mackay Laboratory

Mackay Laboratory

Refer below

ADDRESS: Level 17, 240 Queen Street, Brisbane Qld 4000

PROJECT:CQ Coal Styx Basin Geotechnical InvestigationSAMPLED BY:CardnoSAMPLE DATE:02-Sep-19LOCATION:Styx BasinTESTED BY:SGTEST DATE:23-Oct-19

TEST PROCEDURE: AS 4133.3.4 (2009) **CHECKED BY**: AW **CHECK DATE**: 24-Oct-19

Lab Ref No	Borehole	Client Ref	Corrected Depth From (m)	Corrected Depth To (m)	Slake Durability Index (First Cycle) %	Slake Durability Index (Second Cycle) %	Appearance of Fragments Retained in the drum	Appearance of Fragments Passing the drum
19-5326A	STX1903G	slk-4	21.62	21.86	0.0	0.0	Rock lumps completely broken down, many small angular particles present	Large quantities of angular, flaky material present
19-5343A	STX1903G	slk-21	33.02	33.24	63.1	15.6	Rock lumps completely broken down, many small angular particles present	Large quantities of angular, flaky material present
19-5349C	STX1903G	slk-27	36.96	37.17	91.9	69.9	Lumps slightly broken down, angular particles present	Gritty material present
195404A	STX1903G	slk-82	74.9	75.07	95.6	85.2	Lumps slightly broken down, angular particles present	Gritty material present
19-5431A	STX1903G	slk-109	106.38	106.57	98.9	96.6	Rock lumps still intact	Fine silt

Temperature of slaking fluid: 23 °C

Slaking fluid used: Potable

Variations from standard: Nil

Accredited No. 910
Certificate No. 19-5326A
Date of Issue 24-Oct-19

Accredited for compliance with ISO/IEC 17025-testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australia/national standards.

Material Type :

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Quality of Materials Report

Order Number :

Test Number :

Client: Central Queensland Coal Report Number: M30863 - 1
Address: Level 17, 240 Queen Street, Brisbane, QLD, 4001 Report Date: 2/12/2019

Project Name : Geotechnical Investigation

CLAY

Project Number: M30863 Test Method: AS1289.3.6.1

Location: CQ Coal Styx Basin , Queensland Page 1 of 1

Sample Number: 19-5507 SAMPLE LOCATION

Sampling Method : Sampled by Client Borehole: STX1904G 1

 Sampled By :
 Cardno
 Depth: 2.22-2.57m

 Date Sampled :
 10/10/2019

Date Tested : 29/11/2019

Material Source : Styx Basin Lot Number :

Remarks : Specification Number :

iternarits .					opeomodiem rumber :			
AS Sieve Size(mm)	Percent Passing	Specification Limits						
100			1001	1 1	Y Y			
75.0								
63.0			90					-
53.0								
37.5			80				- 8	
26.5			70					
19.0								
16.0			8.00					-
13.2			Bercent Bassing(%)					
9.5			250 05 50					
6.7	100		9 40					
4.75	100							
2.36	99		30					-
1.18	97							
0.600	94		20					
0.425	92		10					
0.300	89							
0.150	81		0 0075 0.15	0.3 0.42	5 06 1.18	2.36	4.75	67
0.075	72				AS Sieve Size(mm)			
			Test Method	Results				
iquid Limit (%	6):			35	Shrinkage Comments :	Some Cur	rling Occu	red
Plastic Limit (%	%) :		AS1289.3.1.1, 3.2.1,3.3.1	11	Mould Length (mm):	250		
Plasticity Index	· (%) :		& 3.4.1	24	Sample History	Oven Drie	∍d	
inear Shrinka	ge (%) :			10				
Soil Descriptio	n :				<u> </u>			

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

Document Code RF145-6

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Quality of Materials Report

Order Number :

Client: Central Queensland Coal Report Number: M30863 - 2
Address: Level 17, 240 Queen Street, Brisbane, QLD, 4001 Report Date: 2/12/2019

Project Name : Geotechnical Investigation

Project Number : M30863 Test Method : AS1289.3.6.1

Location: CQ Coal Styx Basin , Queensland Page 1 of 1

Sample Number: 19-5508 SAMPLE LOCATION

Sampling Method : Sanpled by Client Borehole: STX1904G 2

Sampled By: Cardno Depth: 3.70-3.89m

Date Sampled : 10/10/2019

Date Tested : 29/11/2019

 Material Type :
 CLAY
 Test Number :

 Material Source :
 Styx Basin
 Lot Number :

 Remarks :
 Specification Number :

AS Sieve Size(mm)	Percent Passing	Specification Limits							
100			1001	i i	1				
75.0						0			
63.0			90						
53.0									
37.5			80						
26.5			70						
19.0									
16.0			€ 60 €						
13.2			Percent Passing(%)						
9.5			out Pa						
6.7			e 40						
4.75	100								
2.36	100		30						
1.18	99								
0.600	98		20						
0.425	97		10						
0.300	96								
0.150	94		0	75 0.15	03	0.425	06 118	236	4.75
0.075	87					AS Sieve	e Size(mm)		
				Test Method	Results				
Liquid Limit (9	%):				60	Shrinka	ige Comments :	Some Curling C	ccured
Plastic Limit (Plastic Limit (%) :		AS12	89.3.1.1, 3.2.1,3.3.1	21	Mould Length (mm):		250	
Plasticity Inde	x (%) :		& 3.4.1		39	Sample	History	Oven Dried	
Linear Shrinka	ige (%) :				13.5				
Soil Description	n :	_							

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

Document Code RF145-6

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Quality of Materials Report

Order Number :

Client: Central Queensland Coal Report Number: M30863 - 2
Address: Level 17, 240 Queen Street, Brisbane, QLD, 4001 Report Date: 2/12/2019

Project Name : Geotechnical Investigation

Project Number : M30863 Test Method : AS1289.3.6.1

Location: CQ Coal Styx Basin , Queensland Page 1 of 1

Sample Number: 19-5508 SAMPLE LOCATION

Sampling Method : Sanpled by Client Borehole: STX1904G 2

Sampled By: Cardno Depth: 3.70-3.89m

Date Sampled : 10/10/2019

Date Tested : 29/11/2019

 Material Type :
 CLAY
 Test Number :

 Material Source :
 Styx Basin
 Lot Number :

 Remarks :
 Specification Number :

AS Sieve Size(mm)	Percent Passing	Specification Limits							
100			1001	i i	1				
75.0						0			
63.0			90						
53.0									
37.5			80						
26.5			70						
19.0									
16.0			€ 60 €						
13.2			Percent Passing(%)						
9.5			out Pa						
6.7			B 40						
4.75	100								
2.36	100		30						
1.18	99								
0.600	98		20						
0.425	97		10						
0.300	96								
0.150	94		0	75 0.15	03	0.425	06 118	236	4.75
0.075	87					AS Sieve	e Size(mm)		
				Test Method	Results				
Liquid Limit (9	%):				60	Shrinka	ige Comments :	Some Curling C	ccured
Plastic Limit (Plastic Limit (%) :		AS12	89.3.1.1, 3.2.1,3.3.1	21	Mould Length (mm):		250	
Plasticity Inde	x (%) :		& 3.4.1		39	Sample	History	Oven Dried	
Linear Shrinka	ige (%) :				13.5				
Soil Description	n :	_							

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

Document Code RF145-6

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740

Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Consolidated Undrained Soil Triaxial Report

Client: Central Queensland Coal Level 17, 240 Queen Street, Brisbane, Q Report Date: Address:

Project Number: M30863

CQ Coal Styx Basin Geotechnical Investi Test Method Project Name:

Location: Borehole: STX1904G, Depth 2.22-2.37m

Report Number: 19-5507A 2/12/2019

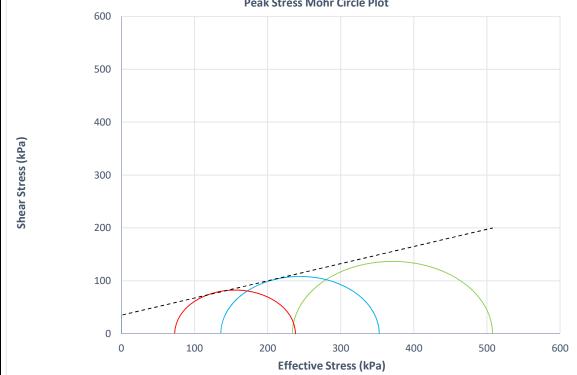
Client Number:

AS 1289.6.4.2

Page 1

Date Sampled: 19-5507A 2/09/2019 Sample Number: Date Tested: 19/11/2019 Material Description: Sampled By: Sampled by Client Initial Wet Density:

Initial Sample Height: 204.2 mm Initial Sample Diameter: 101.8 mm Initial Moisture: 12.0 % Final Moisture: 14.8 %


Sampling Method: As Received

Moisture Method: AS 1289.2.1.1

Brown Clay 2.10 t/m^3 1.87 t/m^3 Initial Dry Density: L/D Ratio: 2.0:1 Skempton's B Response: 0.95 %

Sample Type: Core

Strain Rate %/min: 0.050 0.050 0.050 **Peak Stress Mohr Circle Plot** 600

Effective Cohesion C' (kPa): Effective Angle of Friction ϕ' (Degrees):

Graph not to scale

Failure Criteria:

Note:

Peak Deviator Stress

Membrane Thickness: 0.3mm

Sample/s supplied by

Client

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

35.0

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

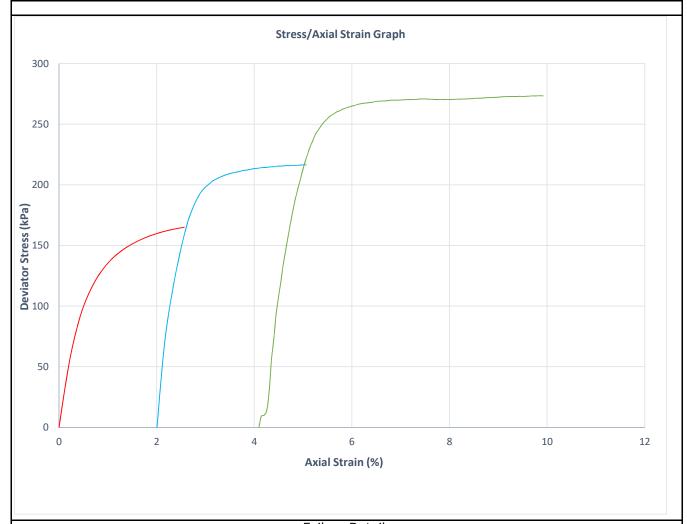
Consolidated Undrained Soil Triaxial Report

Client: Central Queensland Coal Address: Level 17, 240 Queen Stre

Level 17, 240 Queen Street, Brisbane, Q Report Date:

Project Number: M30863

Project Name: CQ Coal Styx Basin Geotechnical Investi Test Method


Location: Borehole: STX1904G, Depth 2.22-2.37m

Report Number: 19-5507A Report Date: 2/12/2019

Client Number:

AS 1289.6.4.2

Page 2

	Failure Details										
Cell Pressure	Back Effictive Initial F			nitial Pore Failure Pore	Prir	ncipal Effective Str	Deviator Stress	Strain			
(kPa)	Pressure (kPa)	Pressure (kPa)	Pressure (kPa)	Pressure (kPa)	σ '1 (kPa)	σ '3 (kPa)	σ'1/σ'3	(kPa)	(%)		
1500	1400	100	1391	1427	238	73	3.261	165	2.56		
1662	1460	202	1455	1526	353	136	2.593	217	5.03		
1798	1401	397	1422	1562	507	234	2.169	273	9.86		

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

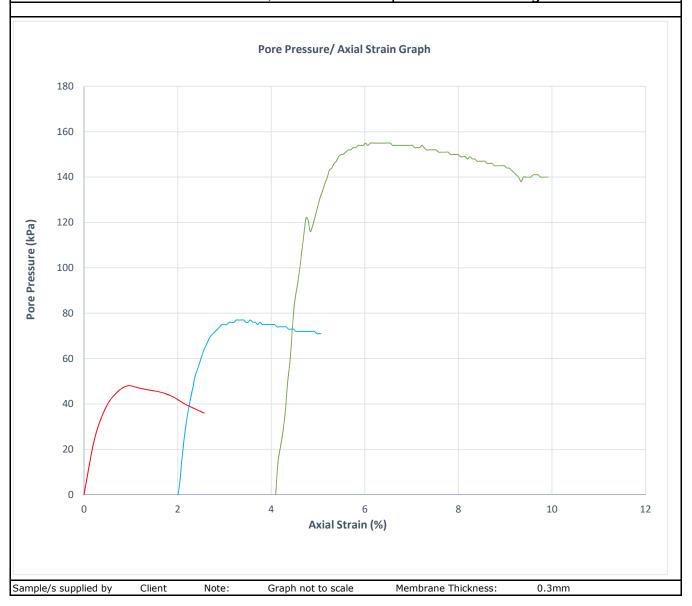
Consolidated Undrained Soil Triaxial Report

Client: Central Queensland Coal

Address: Level 17, 240 Queen Street, Brisbane, Q Report Date:

Project Number: M30863

Project Name: CQ Coal Styx Basin Geotechnical Investi Test Method


Location: Borehole: STX1904G, Depth 2.22-2.37m

Report Number: Report Date: Client Number:

19-5507A 2/12/2019

st Method **AS 1289.6.4.2**

Page 3

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurement: included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

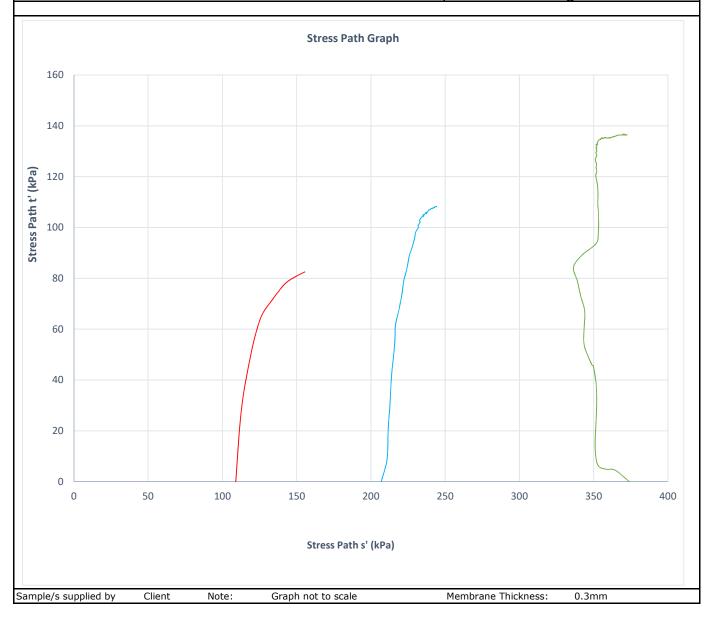
Consolidated Undrained Soil Triaxial Report

Client: Central Queensland Coal

Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Address:


Project Name: CQ Coal Styx Basin Geotechnical Investigation

Location: Borehole: STX1904G, Depth 2.22-2.37m

Report Number: 19-5507A Report Date: 2/12/2019 Client Number: -

Test Method AS 1289.6.4.2

Page 4

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

D. HOEN 13

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

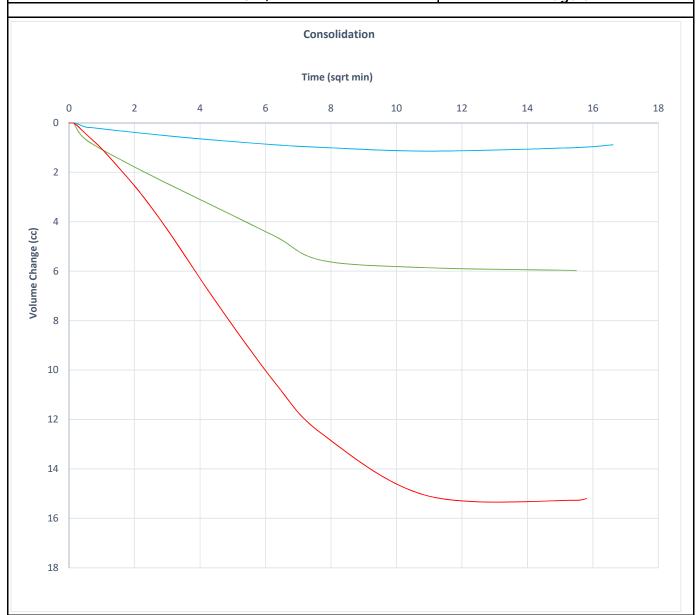
Consolidated Undrained Soil Triaxial Report

Client: Central Queensland Coal

Address: Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Project Name: CQ Coal Styx Basin Geotechnical Investigation


Location: Borehole: STX1904G, Depth 2.22-2.37m

Report Number: Report Date: Client Number: 19-5507A 2/12/2019

Test Method

AS 1289.6.4.2

Page 5

Sample/s supplied by

Client

Note:

Graph not to scale

Membrane Thickness:

ness: 0.3mm
APPROVED SIGNATORY

WORLD RECOGNISED ACCREDITATION

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Derren Hoskins - Lab Manager

NATA Accreditation Number 910 Mackay Laboratory

Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Consolidated Undrained Soil Triaxial Report

Client: Central Queensland Coal

Address: Level 17, 240 Queen Street, Brisbane, QLD

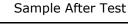
Project Number: M30863

Project Name: CQ Coal Styx Basin Geotechnical Investigation

Location: Borehole: STX1904G, Depth 2.22-2.37m


Report Number:
Report Date:

19-5507A 2/12/2019


Client Number: Test Method

AS 1289.6.4.2

Page 6

Sample Before Test

Sample/s supplied by

Client

Note:

Graph not to scale

Membrane Thickness:

0.3mm

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

D. Hollins

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

APPROVED SIGNATORY

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740

Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Consolidated Undrained Soil Triaxial Report

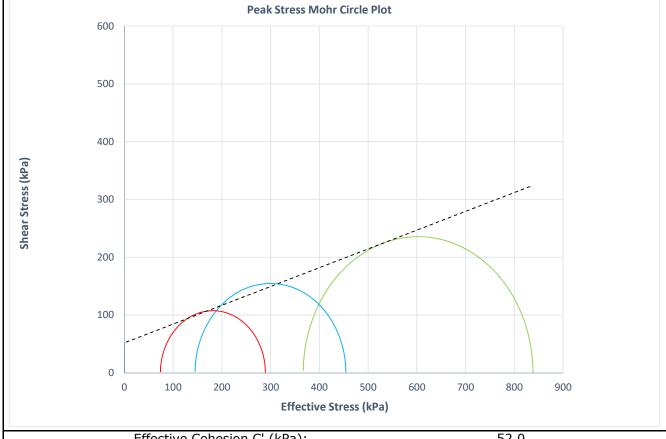
Client: Report Number: **Central Queensland Coal** Address: Level 17, 240 Queen Street, Brisbane, Q Report Date:

Project Number: M30863

Project Name: CQ Coal Styx Basin Geotechnical Investi Test Method

Location: Borehole: STX1904G 2, Depth 3.70-3.89m

19-5508A 2/12/2019 Client Number:


AS 1289.6.4.2

Page 1

Date Sampled: 2/09/2019 19-5508A Sample Number: Date Tested: 24/11/2019 Material Description: Orange White Clay Sampled By: 2.01 t/m^3 Sampled by Client Initial Wet Density: Initial Sample Height: Initial Dry Density: 187.7 mm 1.74 t/m^3 Initial Sample Diameter: 101.9 mm L/D Ratio: 1.8:1 Initial Moisture: 0.95 % 15.4 % Skempton's B Response: 16.5 % Final Moisture: Sample Type:

Core As Received Sampling Method:

Moisture Method: AS 1289.2.1.1 Strain Rate %/min: 0.050 0.031 0.046

Effective Cohesion C' (kPa): 52.0 Effective Angle of Friction ϕ' (Degrees): 18.0 Failure Criteria: Peak Deviator Stress

Sample/s supplied by Client Note: Graph not to scale Membrane Thickness: 0.3mm

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740

Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

19-5508A

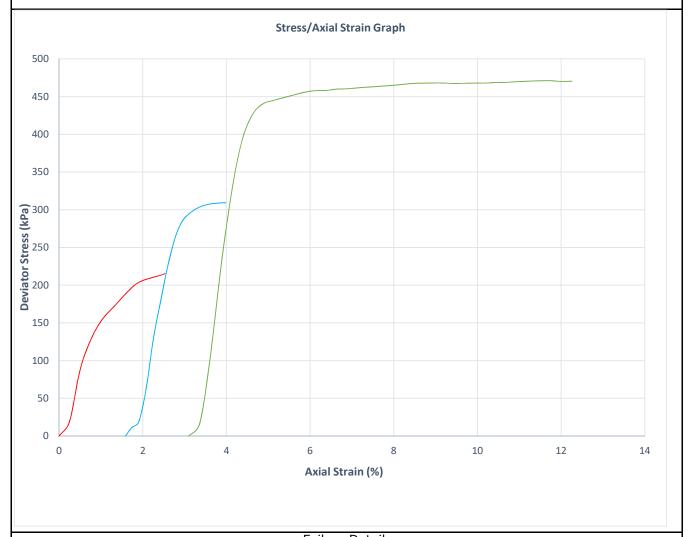
Consolidated Undrained Soil Triaxial Report

Client: Central Queensland Coal

Level 17, 240 Queen Street, Brisbane, Q Report Date:

Project Number: M30863

Address:


CQ Coal Styx Basin Geotechnical Investi Test Method Project Name:

Location: Borehole: STX1904G 2, Depth 3.70-3.89m Report Number:

2/12/2019 Client Number:

AS 1289.6.4.2

Page 2

	Failure Details									
Cell Pressure	Back Effictive		e Initial Pore	Failure Pore	Prir	ncipal Effective Str	Deviator Stress	Strain		
(kPa)	Pressure (kPa)	Pressure (kPa)	Pressure (kPa)	GI4 (I.D.) GI2 (I.D.) GI4 (O '1/ O '3	(kPa)	(%)		
1300	1200	100	1195	1226	289	74	3.909	215	2.53	
1500	1300	200	1284	1355	454	145	3.133	309	3.97	
1850	1450	400	1435	1483	838	367	2.284	471	11.72	

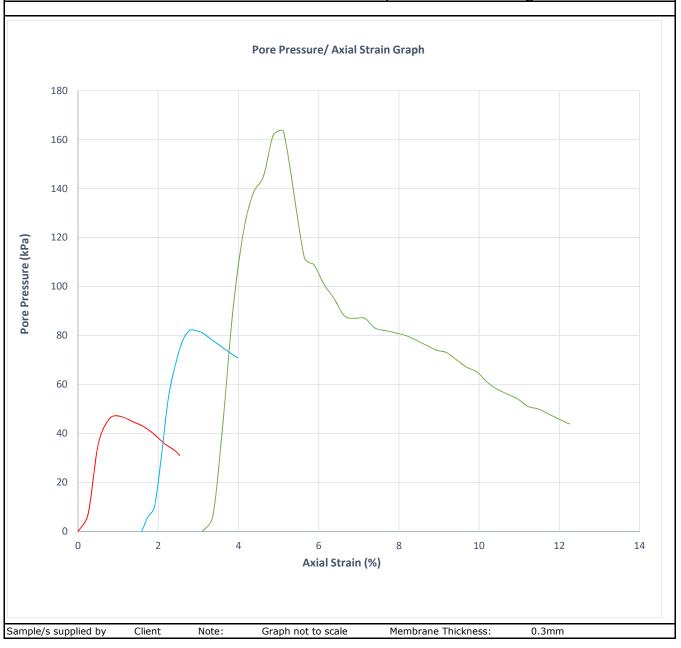
Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Consolidated Undrained Soil Triaxial Report

Client: Central Queensland Coal Report Number:
Address: Level 17, 240 Queen Street, Brisbane, Q Report Date:


Project Number: M30863

Project Name: CQ Coal Styx Basin Geotechnical Investi Test Method

Location: Borehole: STX1904G 2, Depth 3.70-3.89m

Report Number: 19-5508A
Report Date: 2/12/2019
Client Number: -

Page 3

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

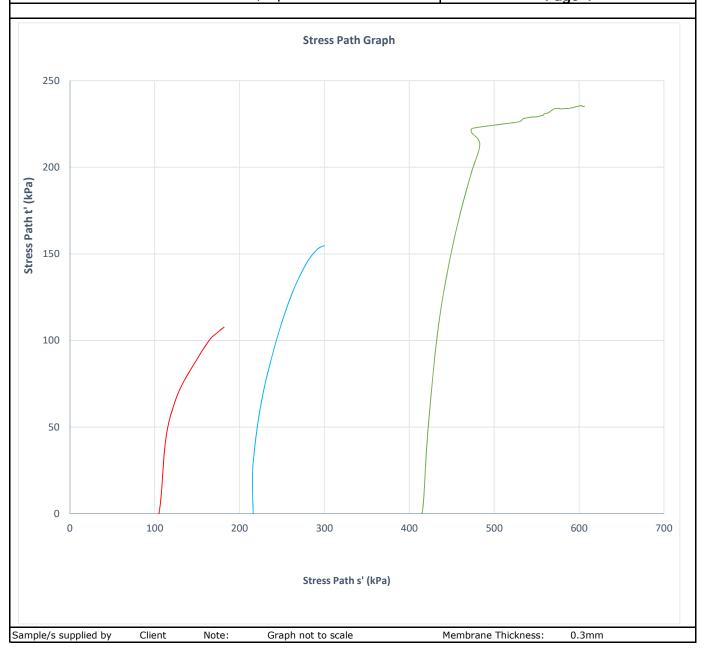
71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740

Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Consolidated Undrained Soil Triaxial Report

Client: Central Queensland Coal Address:

Level 17, 240 Queen Street, Brisbane, QLD


Project Number: M30863

Project Name: CQ Coal Styx Basin Geotechnical Investigation | Test Method

Location: Borehole: STX1904G 2, Depth 3.70-3.89m Report Number: 19-5508A Report Date: 2/12/2019 Client Number:

AS 1289.6.4.2

Page 4

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740

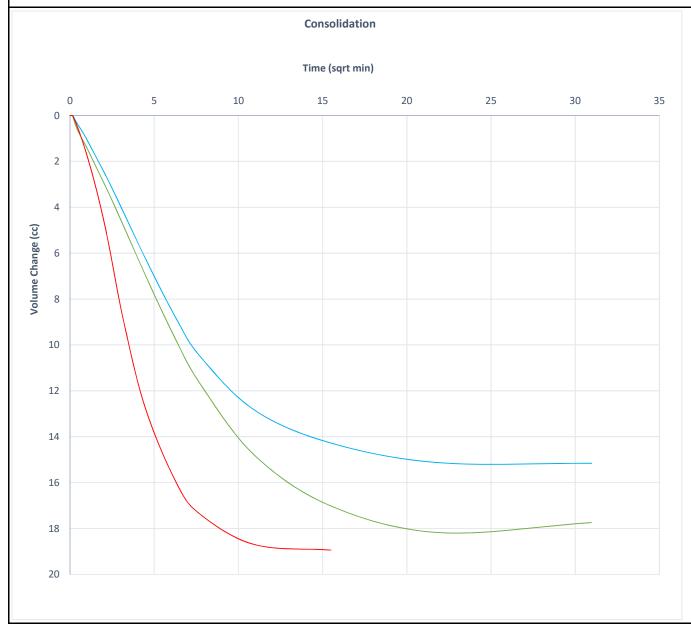
Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Consolidated Undrained Soil Triaxial Report

Client: Central Queensland Coal Address:

Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863


Project Name: CQ Coal Styx Basin Geotechnical Investigation

Location: Borehole: STX1904G 2, Depth 3.70-3.89m Report Number: 19-5508A Report Date: 2/12/2019

Client Number:

AS 1289.6.4.2 Test Method

Page 5

Sample/s supplied by

Client

Note:

Graph not to scale

Membrane Thickness:

0.3mm

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

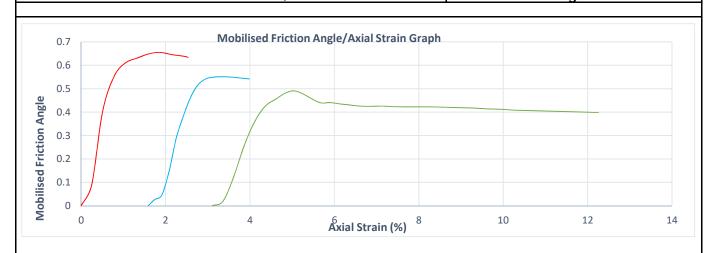
71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Consolidated Undrained Soil Triaxial Report

Client: Central Queensland Coal
Address: Level 17, 240 Queen Stre

Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863


Project Name: CQ Coal Styx Basin Geotechnical Investigation

Location: Borehole: STX1904G 2, Depth 3.70-3.89m

Report Number: 19-5508A
Report Date: 2/12/2019
Client Number: -

Test Method AS 1289.6.4.2

Page 6

Sample Before Test

Sample After Test

Sample/s supplied by

Client

Note:

Graph not to scale

Membrane Thickness:

0.3mm

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

D. Holins

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

CLIENT REF:

TEST PROCEDURES:

CARDNO (QLD) PTY LTD 71 MAGGIOLO DRIVE MACKAY QLD TRIAXIAL PROPERTIES OF A ROCK

Sheet 1 of 7 Mackay Laboratory

CLIENT: Central Queenssland Coal JOB NO: M30863 LAB REF NO: 19-5490A

ADDRESS: Level 17, 240 Queen Street, Brisbane, QLD 4000

D7012-14 Method A; D4543

PROJECT: CQ Coal Styx Basin Geotechnical Investigation SAMPLED BY: Client DATE: 02-Sep-19
LOCATION: Styx Coal Mine TESTED BY: PM DATE: 07-Nov-19

MATERIAL: Carbonaceous Siltstone CHECKED BY: DH DATE: 08-Nov-19

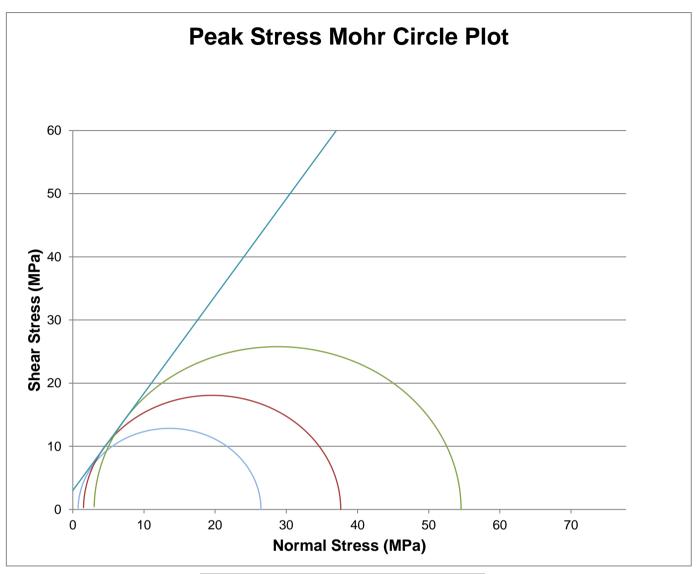
Seam: -		Sample Details					
		Borehole:	STX1904G	Sample number:	UCS-42		
		Depth from (m):	62.24	Depth to (m):	62.40		
Test Apparatus:	Shimadzu UEH-50	Length (mm):		124.5			
Measurement:	Displacement Transducer	Diameter (mm):		60.8			
weasurement.	Displacement Hansudcei	Moisture Content	(%):	1.3			
Rate of Loading (MPa/min):	8.48	Mass of Sample (g):	572	2.1		
Time to Failure (min):	5.02	Dry Density (t/m3)):	1.	56		
Test Duration (min):	5.36	Wet Density (t/m3):	1.5	58		

Intact Strength								
Confining Pressure (MPa) Maximum Principal Stress (MPa): Axial Strain (%)								
Stage 1	0.75	26.4	0.58					
Stage 2	1.5	37.6	0.86					
Stage 3	3	54.6	1.34					
Residual Strength								
	Confining Pressure (MPa)	Median Axial Stress (MPa)						
Residual Stress 1	3	40.2						
Residual Stress 2	1.5	27.6						
Residual Stress 3	0.75	18.2						
Residual Stress 4	0.5	13.1						
Residual Stress 5	0.25	8.9						

Dominant structural features with respect to core axis

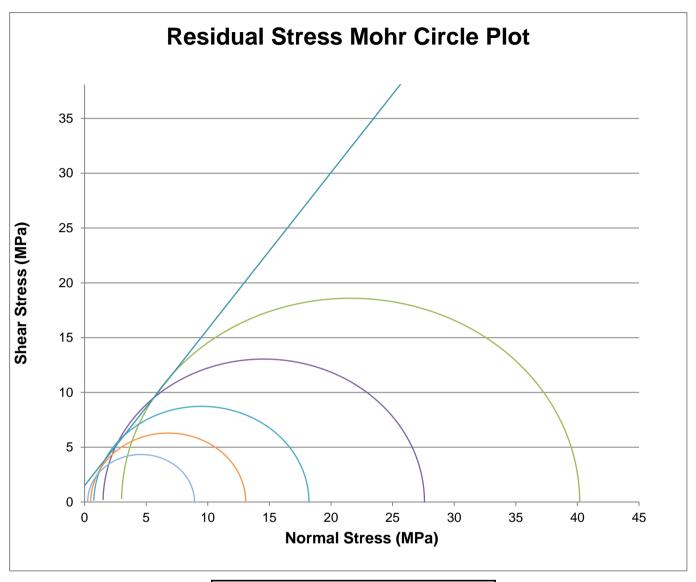
Before Photo	After Photo	Failure Diagram
		(a) Single shear plane

Comments: Testing was done at Room Temperature.

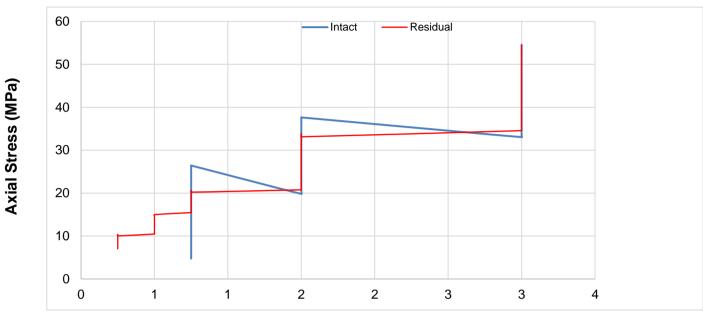

APPROVED SIGNATORY

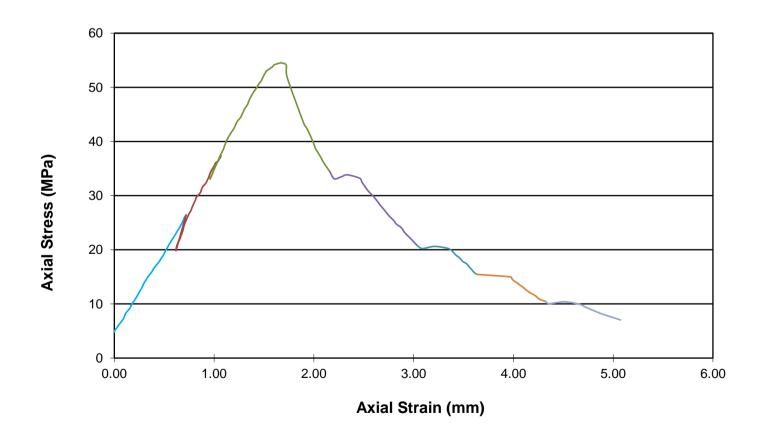
Trudie Bradhury - Analy

Trudie Bradbury - Analyst NATA Accreditation Number 910 Mackay Laboratory

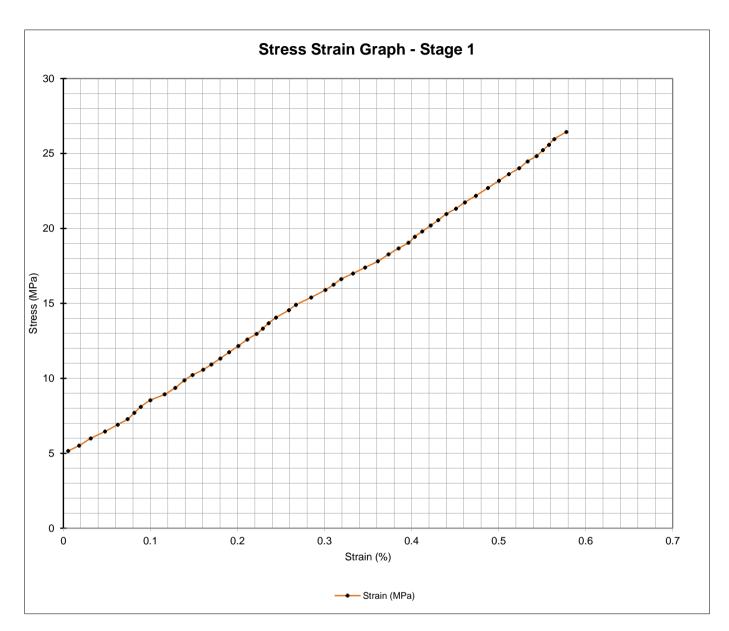

Sheet 2 of 7 Mackay Laboratory

Estimated Peak Envelope					
Angle	57.0 °				
Cohesion	3.0 MPa				
Notes:	Graph not to scale				
Lab Ref No.:	19-5490A				

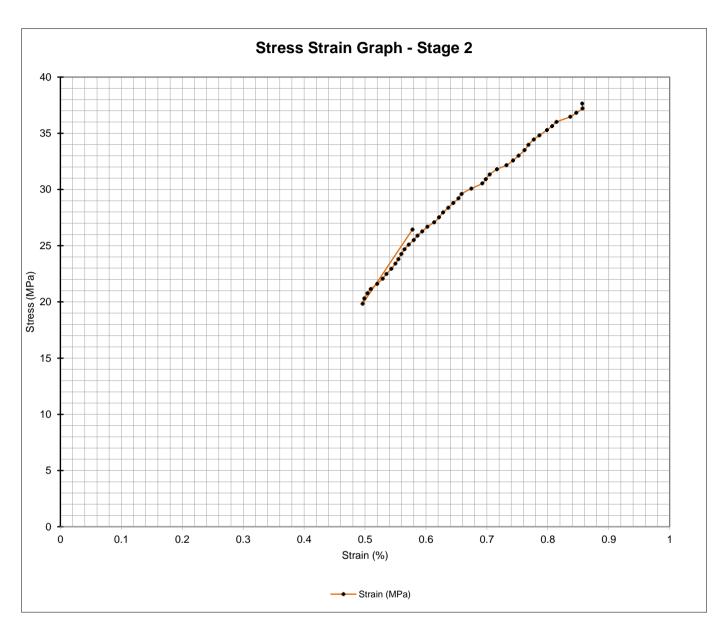

Sheet 3 of 7 Mackay Laboratory


Estimated Residual Envelope					
Angle	55.0 °				
Cohesion	1.5 MPa				
Notes:	Graph not to scale				
Lab Ref No.:	19-5490A				

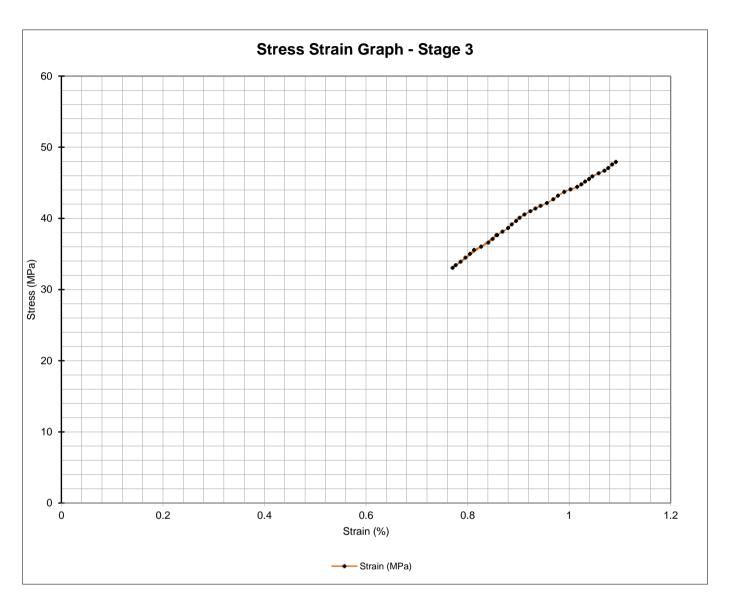
Sheet 4 of 7 Mackay Laboratory



Confining Pressure (MPa)



Sheet 5 of 7 Mackay Laboratory



Sheet 6 of 7 Mackay Laboratory

Sheet 7 of 7 Mackay Laboratory

CLIENT REF:

TEST PROCEDURES:

CARDNO (QLD) PTY LTD 71 MAGGIOLO DRIVE MACKAY QLD TRIAXIAL PROPERTIES OF A ROCK

Sheet 1 of 7 Mackay Laboratory

CLIENT: Central Queenssland Coal JOB NO: M30863 LAB REF NO: 19-5494A

ADDRESS: Level 17, 240 Queen Street, Brisbane, QLD 4000

D7012-14 Method A; D4543

PROJECT: CQ Coal Styx Basin Geotechnical Investigation SAMPLED BY: Client DATE: 02-Sep-19 LOCATION: Styx Coal Mine TESTED BY: PM DATE: 07-Nov-19

MATERIAL: Sandstone CHECKED BY: DH DATE: 08-Nov-19

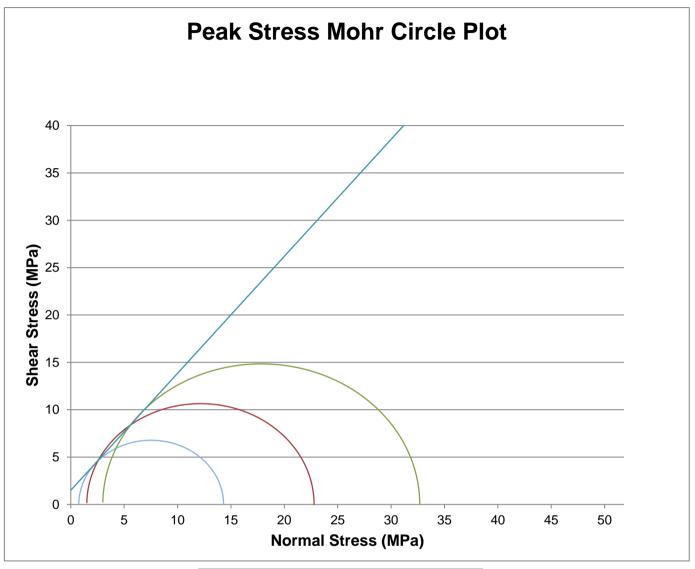
Seam: -		Sample Details				
		Borehole:	STX1904G	Sample number:	UCS-46	
		Depth from (m):	70.58	Depth to (m):	70.78	
Test Apparatus:	Shimadzu UEH-50	Length (mm): 123.2			3.2	
Measurement:	Displacement Transducer	Diameter (mm):		60.9		
Measurement.	Displacement Hansudcei	Moisture Content	(%):	1.8		
Rate of Loading (MPa/min):	21.47	Mass of Sample (g):	899	9.6	
Time to Failure (min):	4.30	Dry Density (t/m3)):	2.4	46	
Test Duration (min):	4.56	Wet Density (t/m3):	2.5	51	

Intact Strength			
	Confining Pressure (MPa)	Maximum Principal Stress (MPa):	Axial Strain (%)
Stage 1	0.75	14.3	0.46
Stage 2	1.5	22.8	0.80
Stage 3	3	32.7	1.23
Residual Strength			
	Confining Pressure (MPa)	Median Axial Stress (MPa)	
Residual Stress 1	3	29.9	
Residual Stress 2	1.5	26.7	
Residual Stress 3	0.75	23.5	
Residual Stress 4	0.5	17.6	
Residual Stress 5	0.25	13.5	

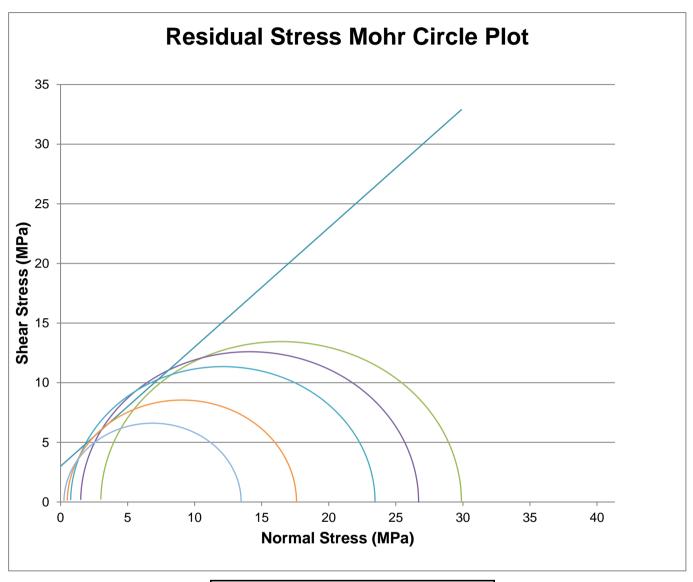
Dominant structural features with respect to core axis

Before Photo	After Photo	Failure Diagram
		(a) Single shear plane

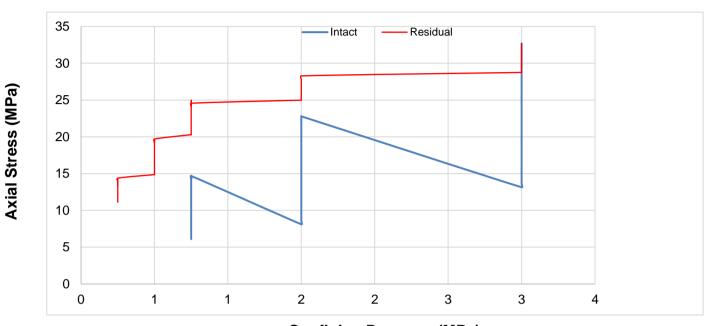
Comments: Testing was done at Room Temperature.

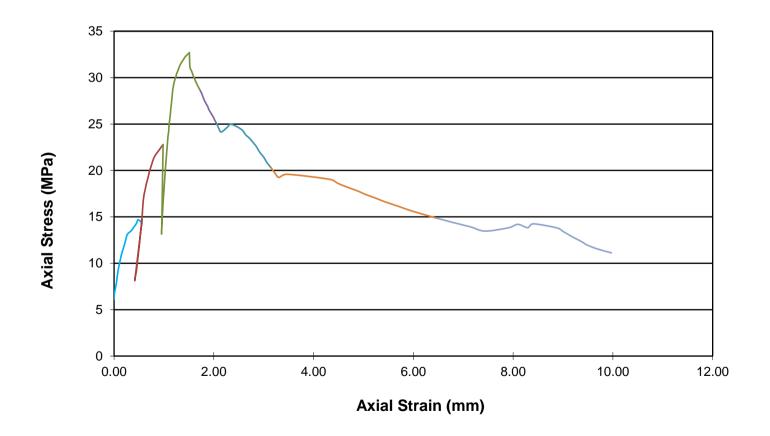

Had a natural crack along a lamination that was glued prior to test.

APPROVED SIGNATORY

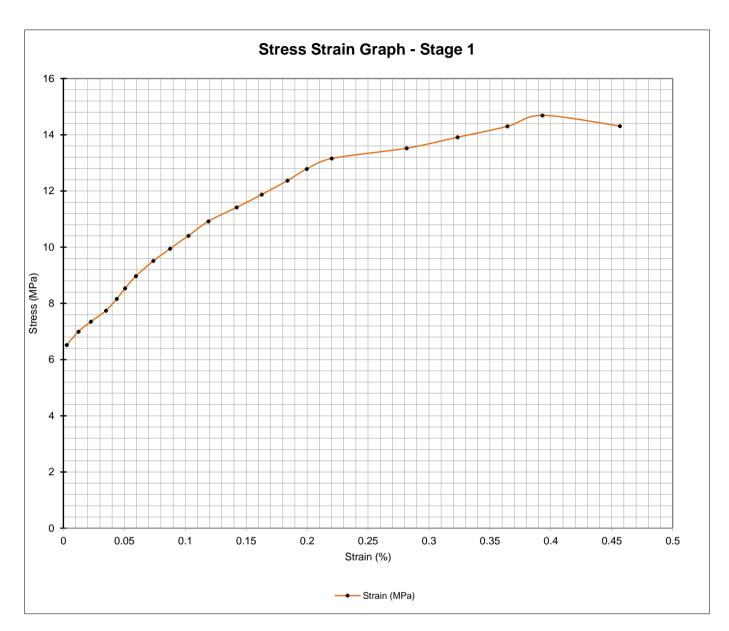

Sheet 2 of 7 Mackay Laboratory

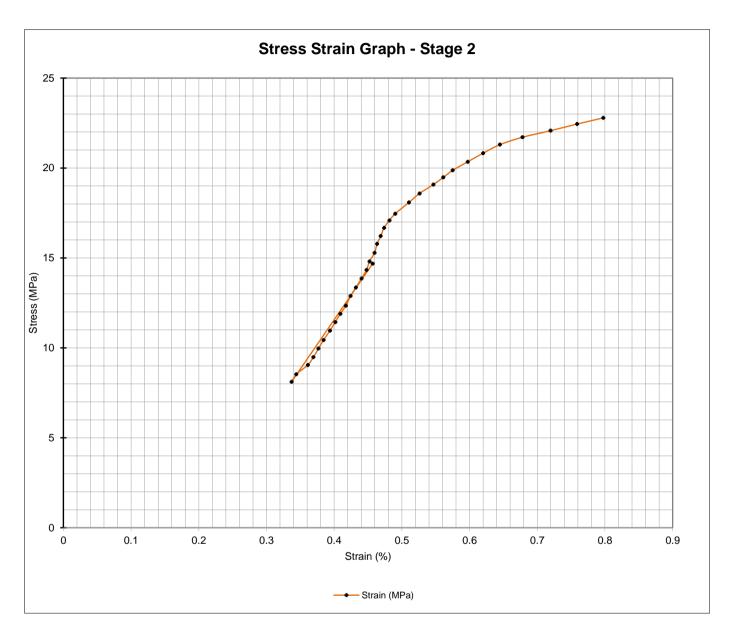
Estimated Peak Envelope		
Angle	51.0 °	
Cohesion	1.5 MPa	
Notes:	Graph not to scale	
Lab Ref No.:	19-5494A	


Sheet 3 of 7 Mackay Laboratory

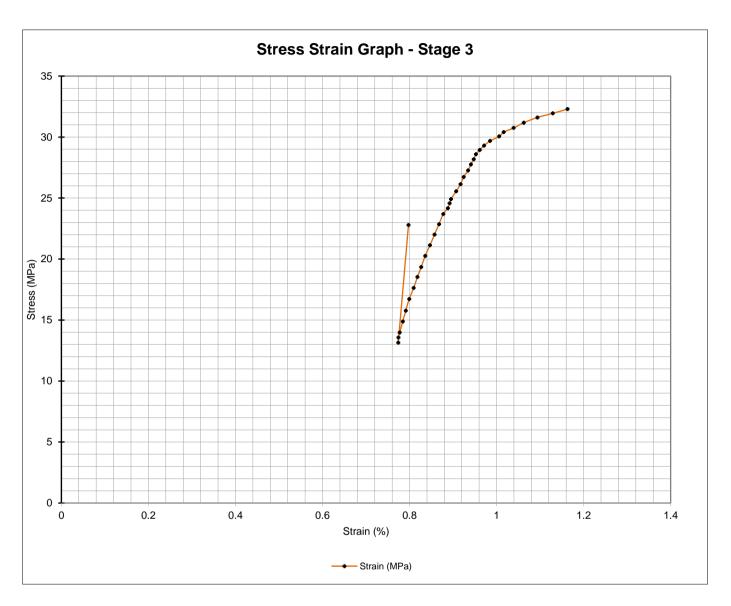

Estimated Residual Envelope		
Angle	45.0 °	
Cohesion	3.0 MPa	
Notes:	Graph not to scale	
Lab Ref No.:	19-5494A	

Sheet 4 of 7 Mackay Laboratory





Sheet 5 of 7 Mackay Laboratory



Sheet 6 of 7 Mackay Laboratory

Sheet 7 of 7 Mackay Laboratory

CLIENT REF:

TEST PROCEDURES:

CARDNO (QLD) PTY LTD 71 MAGGIOLO DRIVE MACKAY QLD TRIAXIAL PROPERTIES OF A ROCK

Sheet 1 of 7 Mackay Laboratory

CLIENT: Central Queenssland Coal JOB NO: M30863 LAB REF NO: 19-5502A

ADDRESS: Level 17, 240 Queen Street, Brisbane, QLD 4000

D7012-14 Method A; D4543

PROJECT:CQ Coal Styx Basin Geotechnical InvestigationSAMPLED BY:ClientDATE:02-Sep-19LOCATION:Styx Coal MineTESTED BY:PMDATE:07-Nov-19

MATERIAL: Interlaminated Sandstone/Siltstone CHECKED BY: DH DATE: 08-Nov-19

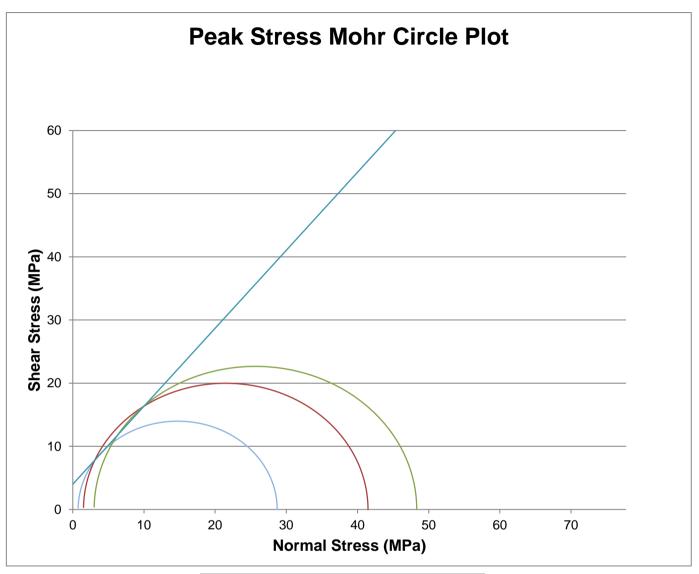
Seam: -		Sample Details			
		Borehole:	STX1904G	Sample number:	UCS-54
		Depth from (m):	92.98	Depth to (m):	93.21
Test Apparatus:	Shimadzu UEH-50	Length (mm):		123	3.8
Measurement:	Displacement Transducer	Diameter (mm):		60	8.8
Measurement.		Moisture Content	(%):	2.	6
Rate of Loading (MPa/min):	12.76	Mass of Sample (g):	890	0.3
Time to Failure (min):	5.45	Dry Density (t/m3)):	2.4	41
Test Duration (min):	4.56	Wet Density (t/m3):	2.4	48

Intact Strength			
	Confining Pressure (MPa)	Maximum Principal Stress (MPa):	Axial Strain (%)
Stage 1	0.75	28.7	0.61
Stage 2	1.5	41.5	0.89
Stage 3	3	48.3	1.04
Residual Strength			
	Confining Pressure (MPa)	Median Axial Stress (MPa)	
Residual Stress 1	3	30.6	
Residual Stress 2	1.5	21.9	
Residual Stress 3	0.75	15.0	
Residual Stress 4	0.5	10.3	
Residual Stress 5	0.25	6.6	

Dominant structural features with respect to core axis

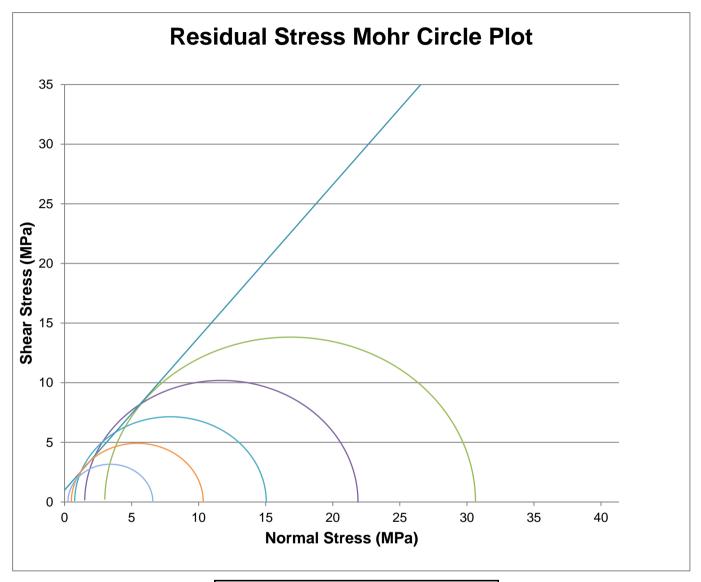
Before Photo	After Photo	Failure Diagram
		(a) Single shear plane

Comments: Testing was done at Room Temperature.



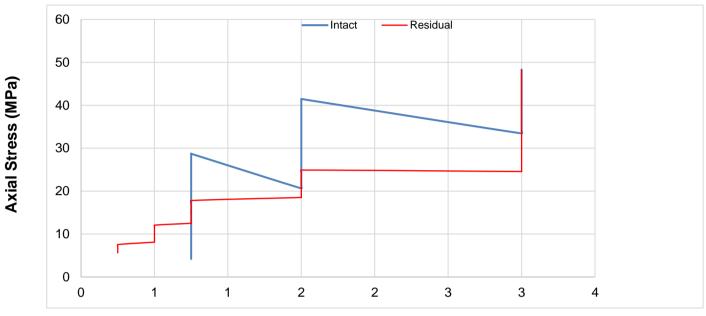
APPROVED SIGNATORY

Trudie Bradbury - Analys

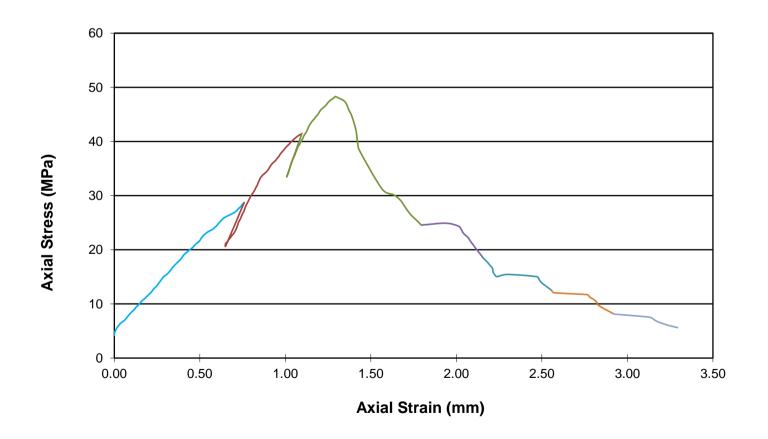

Sheet 2 of 7 Mackay Laboratory

Estimated Peak Envelope		
Angle	51.0 °	
Cohesion	4.0 MPa	
Notes:	Graph not to scale	
Lab Ref No.:	19-5502A	

Sheet 3 of 7 Mackay Laboratory

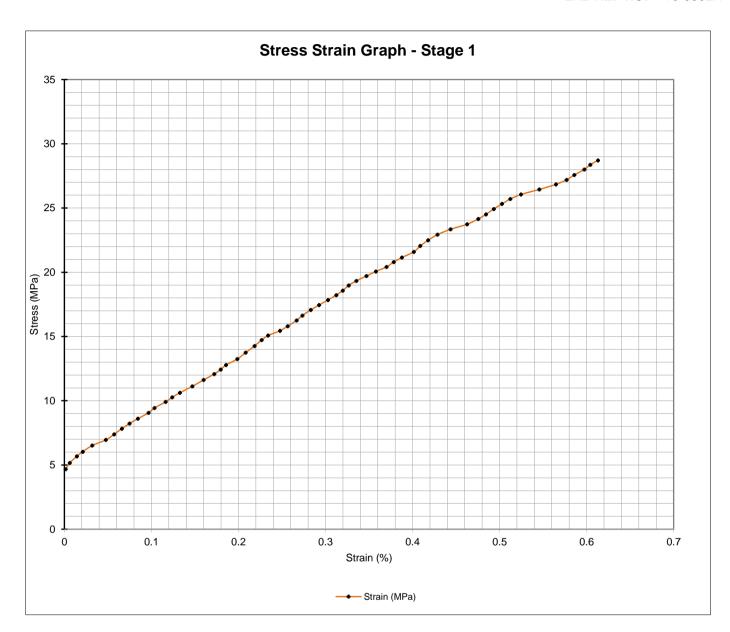


Estimated Residual Envelope		
Angle	52.0 °	
Cohesion	1.0 MPa	
Notes:	Graph not to scale	
Lab Ref No.:	19-5502A	

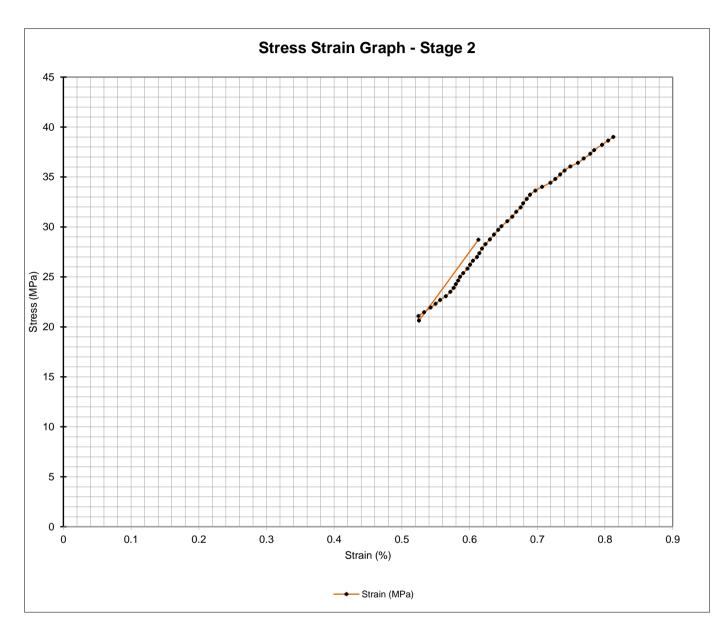


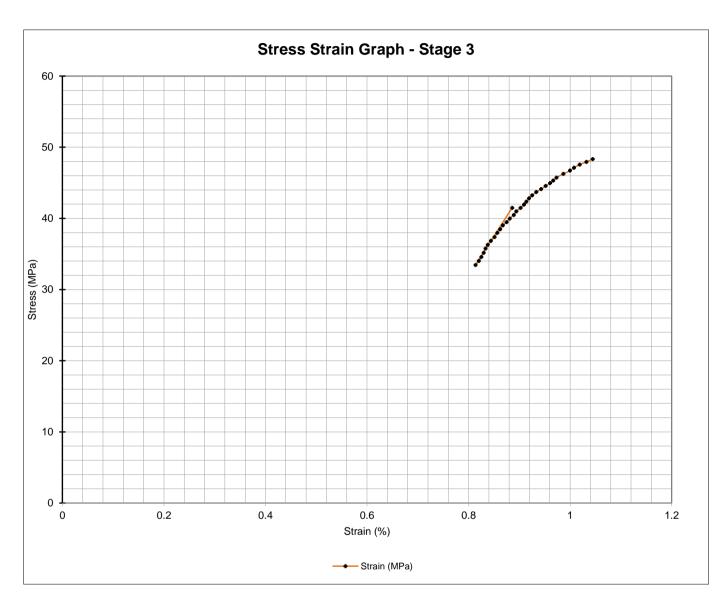
Sheet 4 of 7 Mackay Laboratory

LAB REF NO: 19-5502A


Confining Pressure (MPa)

Sheet 5 of 7 Mackay Laboratory


LAB REF NO: 19-5502A


Sheet 6 of 7 Mackay Laboratory

LAB REF NO: 19-5502A

Sheet 7 of 7 Mackay Laboratory

Sheet 1 of 7 Mackay Laboratory

CLIENT: Central Queenssland Coal JOB NO: M30863 LAB REF NO: 19-5504A

ADDRESS: Level 17, 240 Queen Street, Brisbane, QLD 4000

PROJECT:CQ Coal Styx Basin Geotechnical InvestigationSAMPLED BY:ClientDATE:02-Sep-19LOCATION:Styx Coal MineTESTED BY:PMDATE:07-Nov-19

MATERIAL: Interlaminated Sandstone/Siltstone CHECKED BY: DH DATE: 08-Nov-19

TEST PROCEDURES: D7012-14 Method A; D4543 CLIENT REF:

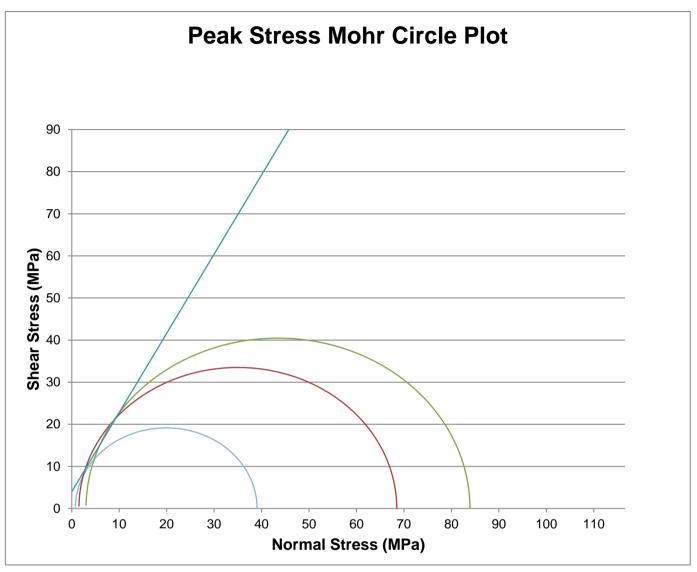
Seam: -		Sample Details			
			STX1904G	Sample number:	UCS-56
		Depth from (m):	98.09	Depth to (m):	98.28
Test Apparatus:	Shimadzu UEH-50	Length (mm):		124	4.7
Measurement:	Displacement Transducer	Diameter (mm):		60.9	
weasurement.	Displacement Transducei	Moisture Content (%):		1.2	
Rate of Loading (MPa/min):	19.41	Mass of Sample (g):	970).9
Time to Failure (min):	5.45	Dry Density (t/m3)):	2.6	64
Test Duration (min):	6.15	Wet Density (t/m3):	2.0	67

Intact Strength					
Confining Pressure (MPa) Maximum Principal Stress (MPa): Axial Strain (%)					
Stage 1	0.75	39.0	0.23		
Stage 2	1.5	68.5	0.35		
Stage 3	3	83.9	0.51		
Residual Strength					
	Confining Pressure (MPa)	Median Axial Stress (MPa)			
Residual Stress 1	3	65.3			
Residual Stress 2	1.5	48.1			
Residual Stress 3	0.75	35.6			
Residual Stress 4	0.5	28.0			
Residual Stress 5	0.25	19.9			

Dominant structural features with respect to core axis

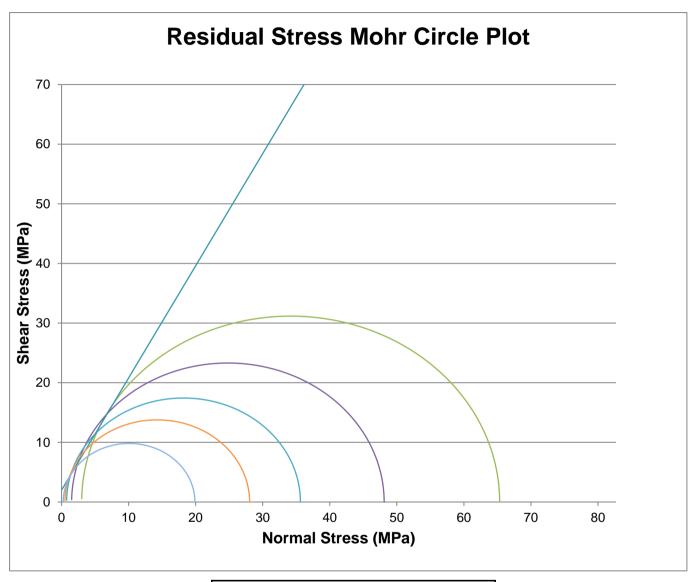
Before Photo	After Photo	Failure Diagram
		(a) Single shear plane

Comments: Testing was done at Room Temperature.

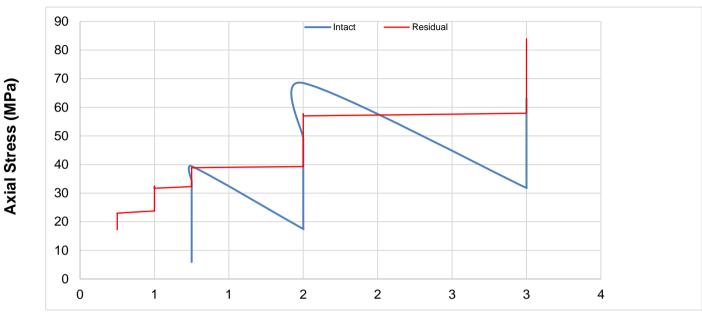


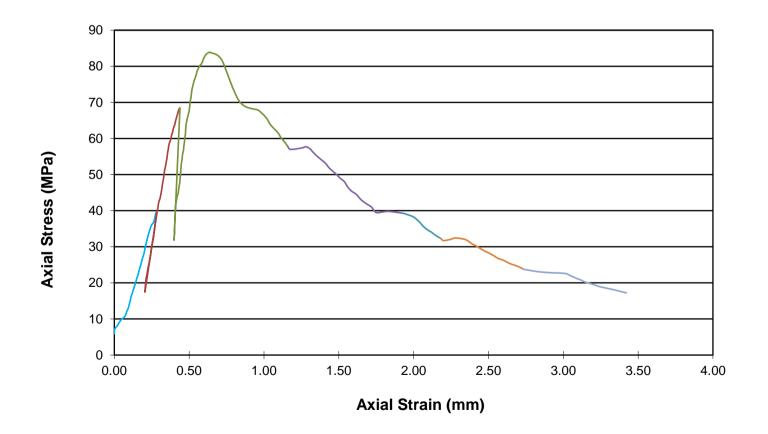
APPROVED SIGNATORY

Trudie Bradbury - Analyst NATA Accreditation Number 910 Mackay Laboratory

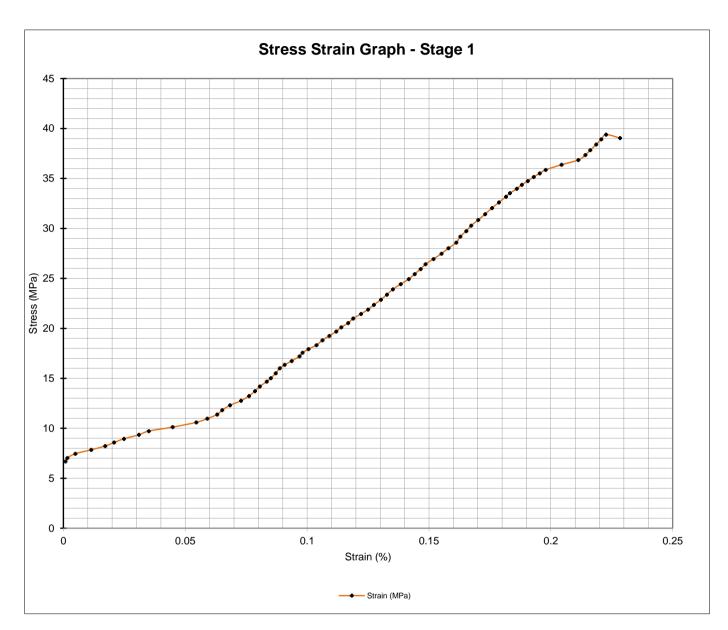

Sheet 2 of 7 Mackay Laboratory

Estimated Peak Envelope			
Angle 62.0 °			
Cohesion 4.0 MF			
Notes:	Graph not to scale		
Lab Ref No.: 19-5504A			


Sheet 3 of 7 Mackay Laboratory

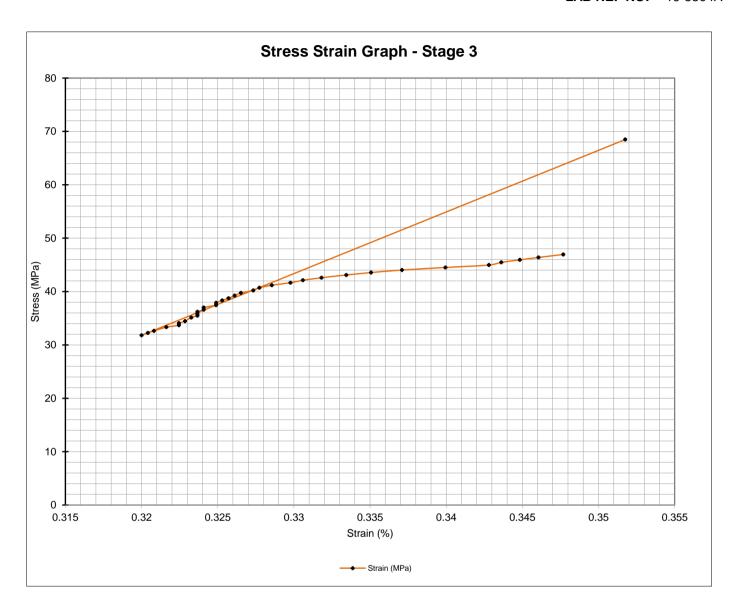

Estimated Residual Envelope			
Angle 62.0 °			
Cohesion 2.0 MPs			
Notes:	Graph not to scale		
Lab Ref No.:	19-5504A		

Sheet 4 of 7 Mackay Laboratory



Confining Pressure (MPa)

Sheet 5 of 7 Mackay Laboratory



Sheet 6 of 7 Mackay Laboratory

Sheet 7 of 7 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740

Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

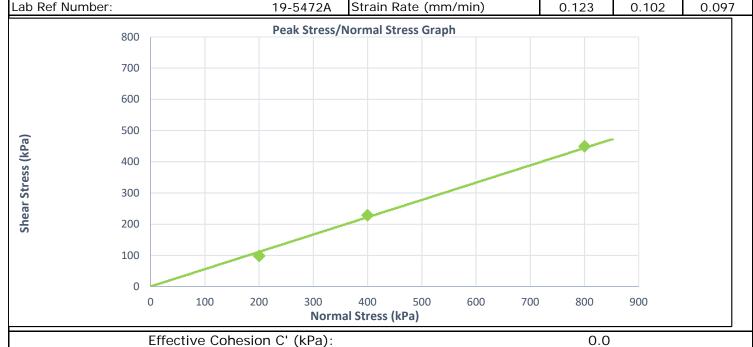
Direct Shear on Rock Report

Client: Central Queensland Coal

Address: Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Project Name: CQ Coal Styx Basin Geotechnical Investigatid Test Method


Location: STX1904G Shear-24

Report Number: 19-5472A Report Date: 14/11/2019

Order Number:

AS 1289.6.2.2

Page 1 Borehole: STX1904G Sample ID: Shear-24 Depth From: 41.97 Depth To: 42.18 Date Sampled: 2/09/2019 Stage No 2 3 Date Tested: 13/11/2019 Wet Density 2.34 2.31 2.34 Cardno Dry Density Sampled By: 2.25 2.23 2.26 AS 1289 1.2.1 Moisture (%) Sampling Method: 3.5 3.7 4.1 AS 1289.2.1.1 Normal Stress (kPa) Moisture Method: 200 400 800 Siltstone Peak Shear Stress (kPa) Material Description: 99 229 450 Core Primary Consolidation (mm) Sample Type: 0.1 0.2 0.3 Lab Ref Number: Strain Rate (mm/min) 0.123 0.102 0.097

Failure Criteria: Sample/s supplied by Cardno Note: Graph not to scale

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Effective Angle of Friction φ' (Degrees):

APPROVED SIGNATORY

Peak Shear Stress

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

29.0

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report

Client: Central Queensland Coal

Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Address:

Project Name: CQ Coal Styx Basin Geotechnical Investigatio

Location: STX1904G

Report Number: 19-5472A
Report Date: 14/11/2019

Order Number: -

st Method **AS 1289.6.2.2**

Page 2

Failure Details				
Stage No	Normal Stress (kPa)	Peak Shear Stress (kPa)	Displacement at Failure (mm)	Test Duration (min)
1	200	99	1.08	44
2	400	229	1.41	49
3	800	450	2.07	56

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

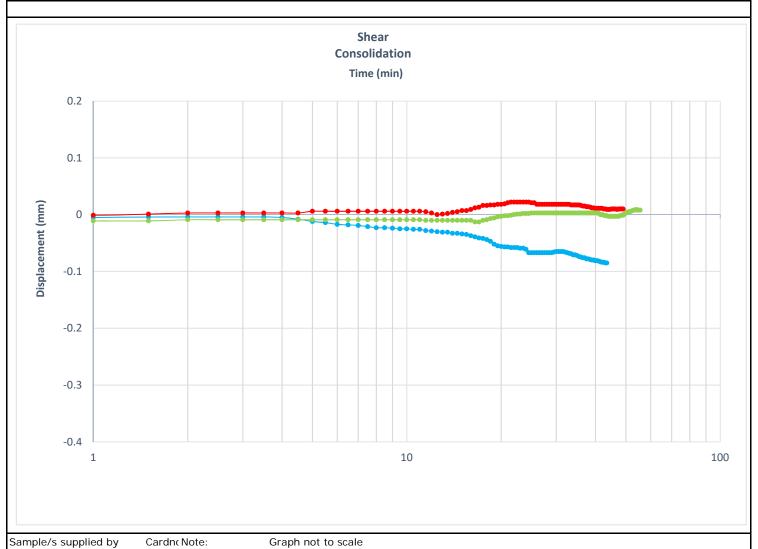
Direct Shear on Rock Report

Client: Central Queensland Coal

Address: Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Project Name: CQ Coal Styx Basin Geotechnical Investigatid Test Method


Location: STX1904G

Report Number: 19-5472A
Report Date: 14/11/2019

Order Number:

ethod **AS 1289.6.2.2**

Page 3

NATA
WORLD RECOGNISED
ACCREDITATION

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740

Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

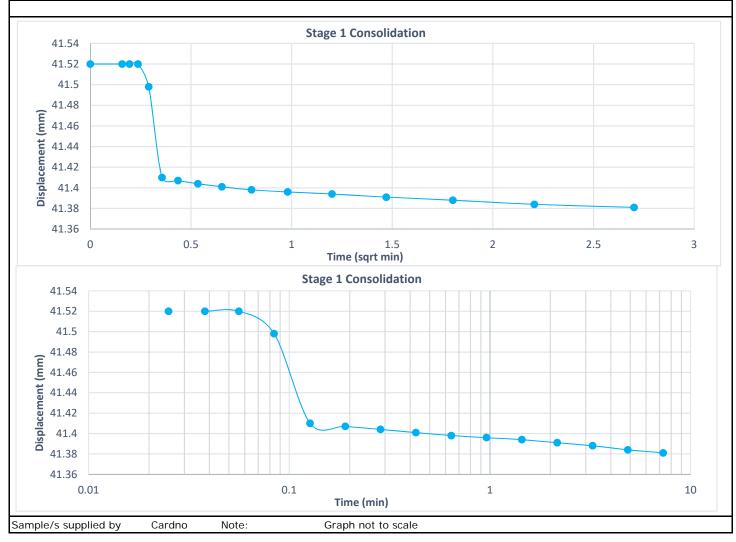
Direct Shear on Rock Report

Client: Central Queensland Coal

Address: Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Project Name: CQ Coal Styx Basin Geotechnical Investigation Test Method


Location: STX1904G

Report Number: 19-5472A
Report Date: 14/11/2019

Order Number:

Test Method **AS 1289.6.2.2**

Page 4

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report

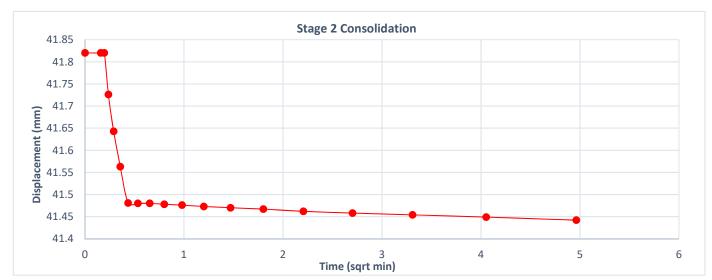
Client: Central Queensland Coal

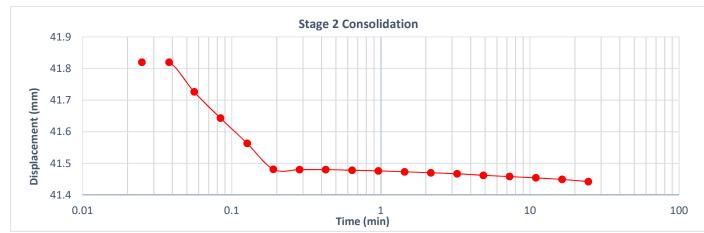
Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Address:

Project Name: CQ Coal Styx Basin Geotechnical Investigation Test Method


Location: STX1904G


Report Number: 19-5472A
Report Date: 14/11/2019

Order Number: -

Test Method **AS 1289.6.2.2**

Page 5

Sample/s supplied by Cardno Note: Graph not to scale

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

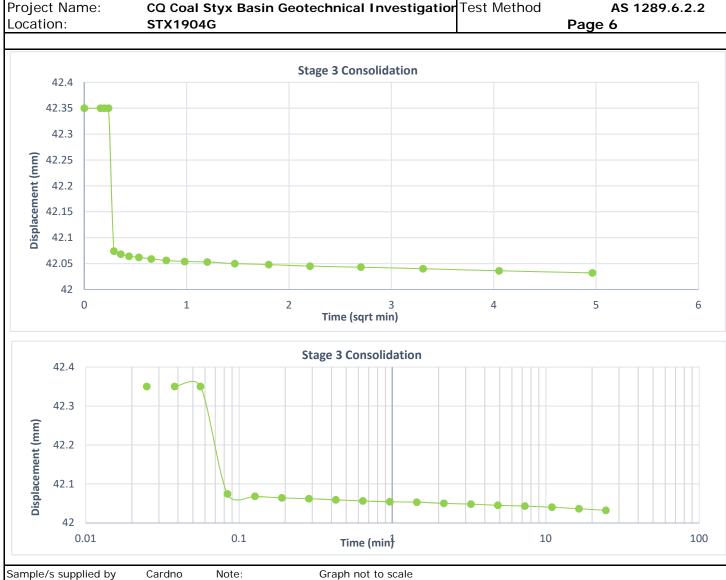
71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740

Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report

Client: **Central Queensland Coal**

Address: Level 17, 240 Queen Street, Brisbane, QLD


Project Number:

Project Name: CQ Coal Styx Basin Geotechnical Investigation Test Method

Report Number:

19-5472A Report Date: 14/11/2019

Order Number:

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740

Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

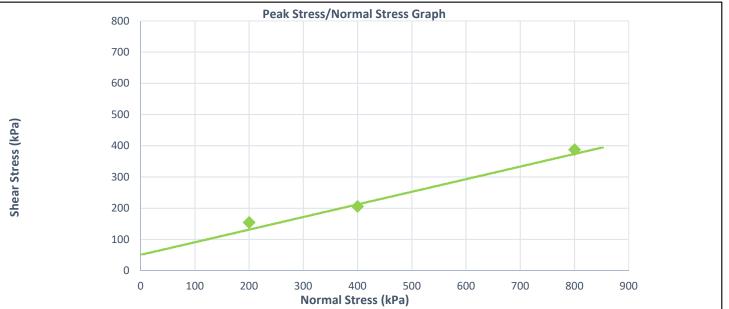
Direct Shear on Rock Report

Client: Central Queensland Coal

Address: Level 17, 240 Queen Street, Brisbane, QLD

Project Number:

Project Name: CQ Coal Styx Basin Geotechnical Investigatid Test Method


Location CTV1004C Shoar-21

Report Number: 19-5479A Report Date: 14/11/2019

Order Number:

AS 1289.6.2.2

Location:	SIX	1904G	Snear-31			Page	l	
Borehole:	STX1904G	Sample ID:	Shear-31	Depth From:	46.97	Depth To:	47.16	
Date Sample	ed:		2/09/2019	Stage No		1	2	3
Date Tested:			13/11/2019	Wet Density		2.24	2.36	2.28
Sampled By:			Cardno	Dry Density		2.14	2.25	2.18
Sampling Me	thod:	Į.	AS 1289 1.2.1	Moisture (%)		4.9	4.9	4.9
Moisture Met	hod:	Į.	AS 1289.2.1.1	Normal Stress (F	kPa)	200	400	800
Material Des	cription:	Interbedded San	dstone and Siltstone	Peak Shear Stre	ss (kPa)	154	206	388
Sample Type	: :		Core	Primary Consolid	dation (mm)	0.2	0.1	0.1
Lab Ref Num	ber:		19-5479A	Strain Rate (mm	n/min)	0.114	0.111	0.100

Effective Cohesion C' (kPa):

Effective Angle of Friction φ' (Degrees):

Failure Criteria:

Peak Shear Stress

Sample/s supplied by Cardno Note: Graph not to scale

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

50.0

22.0

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report

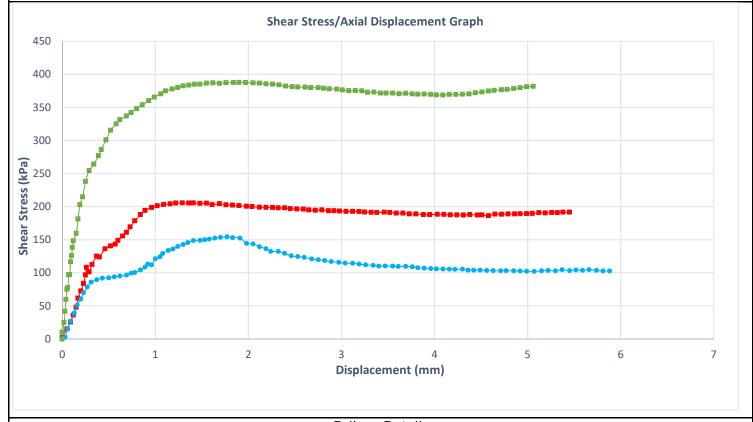
Client: Central Queensland Coal

Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Address:

Project Name: CQ Coal Styx Basin Geotechnical Investigatio


Location: STX1904G

Report Number: 19-5479A
Report Date: 14/11/2019

Order Number:

t Method **AS 1289.6.2.2**

Page 2

Failure Details				
Stage No	Normal Stress (kPa)	Peak Shear Stress (kPa)	Displacement at Failure (mm)	Test Duration (min)
1	200	154	1.77	55
2	400	206	1.29	48
3	800	388	1.90	54

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

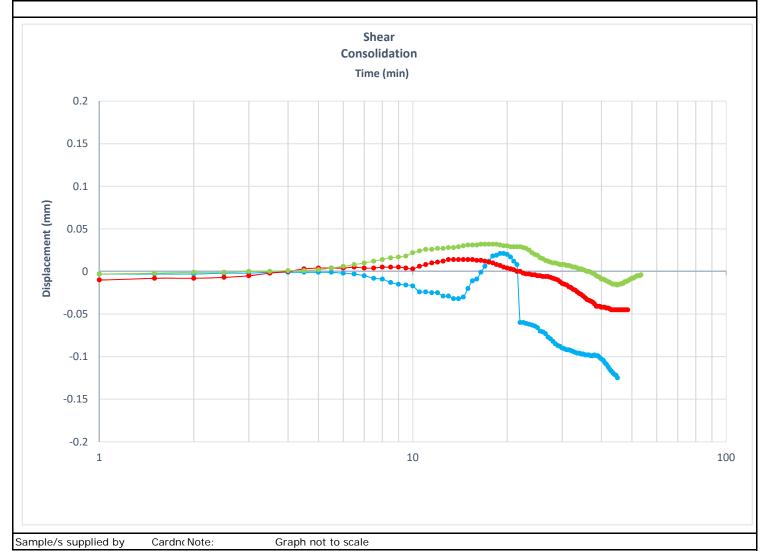
Direct Shear on Rock Report

Client: Central Queensland Coal

Address: Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Project Name: CQ Coal Styx Basin Geotechnical Investigatid Test Method


Location: STX1904G

Report Number: 19-5479A Report Date: 14/11/2019

Order Number:

est Method **AS 1289.6.2.2**

Page 3

WORLD RECOGNISED ACCREDITATION

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

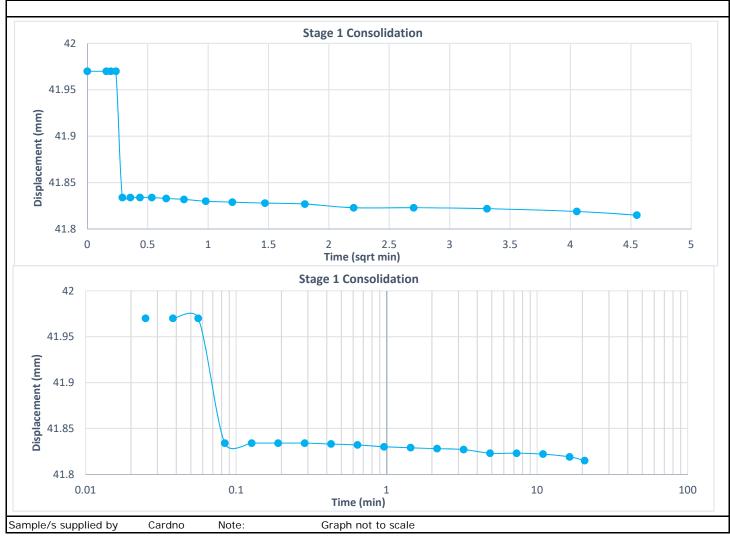
Direct Shear on Rock Report

Client: Central Queensland Coal

Address: Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Project Name: CQ Coal Styx Basin Geotechnical Investigation Test Method


Location: STX1904G

Report Number: 19-5479A Report Date: 14/11/2019

Order Number:

Test Method **AS 1289.6.2.2**

Page 4

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report

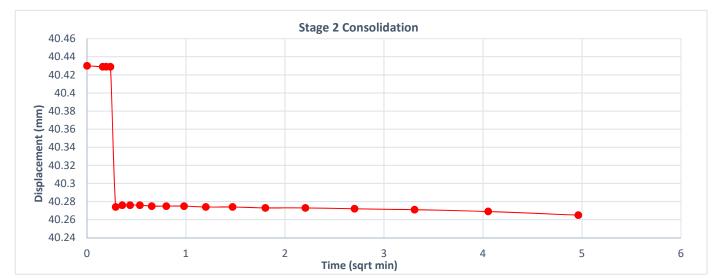
Client: Central Queensland Coal

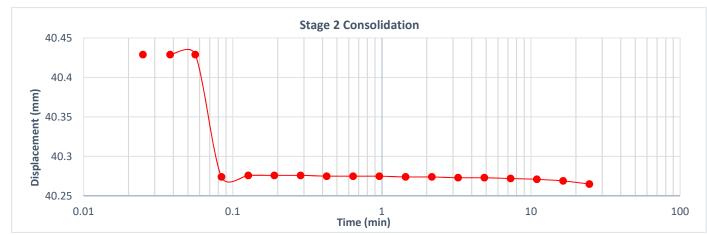
Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Address:

Project Name: CQ Coal Styx Basin Geotechnical Investigation Test Method


Location: STX1904G


Report Number: 19-5479A Report Date: 14/11/2019

Order Number:

Test Method **AS 1289.6.2.2**

Page 5

Sample/s supplied by Cardno Note: Graph not to scale

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

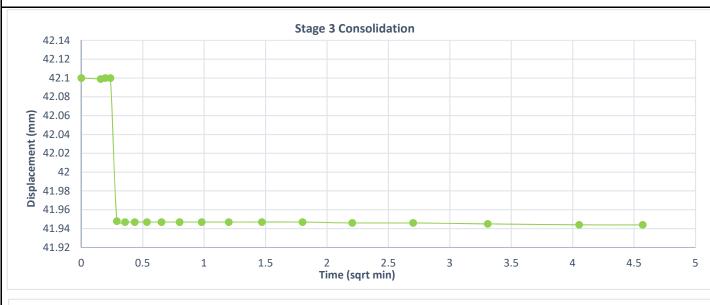
Direct Shear on Rock Report

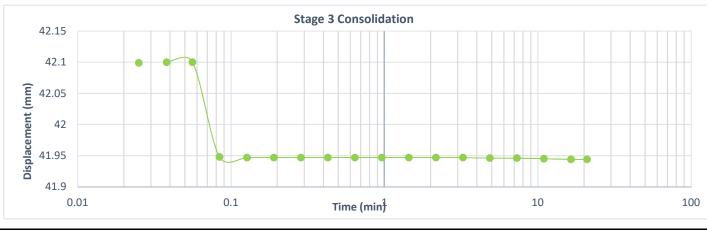
Client: Central Queensland Coal

Address: Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Project Name: CQ Coal Styx Basin Geotechnical Investigation Test Method


Location: STX1904G


Report Number: 19-5479A

Report Date: 14/11/2019
Order Number: -

Test Method **AS 1289.6.2.2**

Page 6

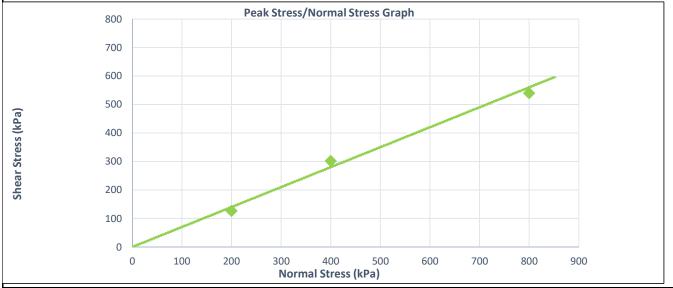
Sample/s supplied by Cardno Note: Graph not to scale

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au


Direct Shear on Rock Report

Client:Central Queensland CoalReport Number:19-5480AAddress:Level 17, 240 Queen Street, Brisbane, QLDReport Date:14/11/2019Project Number:M30863Order Number:-

Project Name: CQ Coal Styx Basin Geotechnical Investigati Test Method AS 1289.6.2.2

Location: STX1904G Shear-32 Page 1

20041.01.1		011001 01				•	
Borehole: STX1904G	Sample ID:	Shear-32	Depth From:	51.80	Depth To:	51.97	
Date Sampled:		2/09/2019	Stage No		1	2	3
Date Tested:		13/11/2019	Wet Density		2.37	2.34	2.30
Sampled By:		Cardno	Dry Density		2.26	2.23	2.20
Sampling Method:	А	S 1289 1.2.1	Moisture (%)		4.8	5.0	4.9
Moisture Method:	Α	S 1289.2.1.1	Normal Stress (I	kPa)	200	400	800
Material Description:		Sandstone	Peak Shear Stre	ess (kPa)	127	302	540
Sample Type:		Core	Primary Consolid	dation (mm)	0.1	0.1	0.3
Lab Ref Number:		19-5480A	Strain Rate (mm	n/min)	0.120	0.102	0.095

Effective Cohesion C' (kPa): 0.0
Effective Angle of Friction φ' (Degrees): 35.0
Failure Criteria: Peak Shear Stress

Sample/s supplied by Cardno Note: Graph not to scale

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

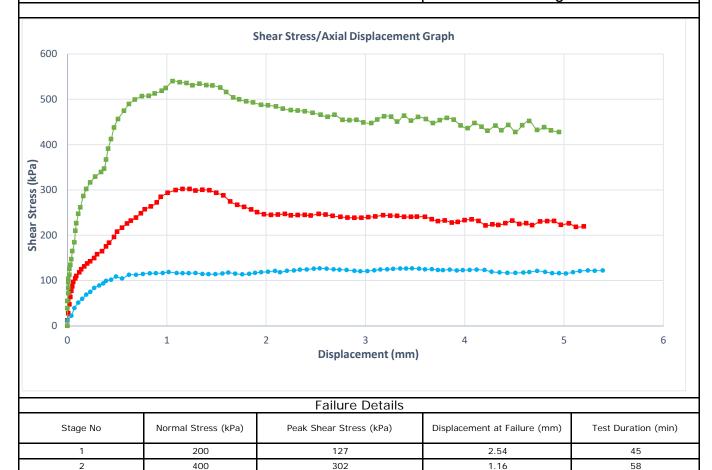
Direct Shear on Rock Report

Client: Central Queensland Coal

Address: Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M3086:

Project Name: CQ Coal Styx Basin Geotechnical Investigati Test Method


Location: STX1904G

Report Number: 19-5480A Report Date: 14/11/2019

Order Number:

t Method **AS 1289.6.2.2**

Page 2

540

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

800

APPROVED SIGNATORY

60

1.06

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report

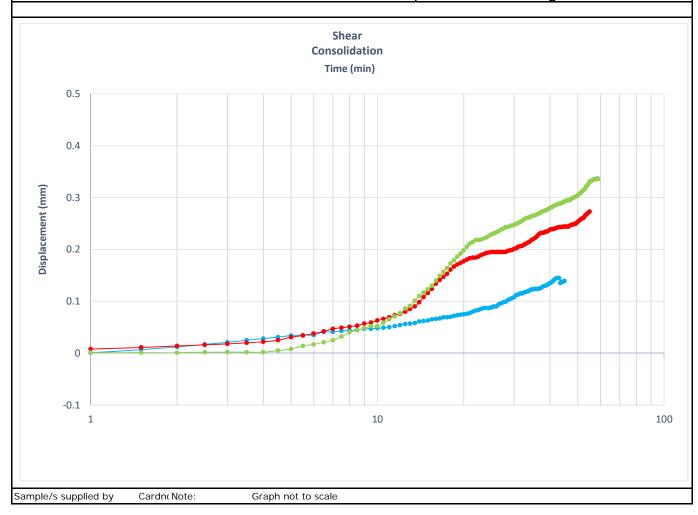
Client: Central Queensland Coal

Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Address:

Project Name: CQ Coal Styx Basin Geotechnical Investigati Test Method


Location: STX1904G

Report Number: 19-5480A Report Date: 14/11/2019

Order Number:

st Method **AS 1289.6.2.2**

Page 3

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740

Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

19-5480A

14/11/2019

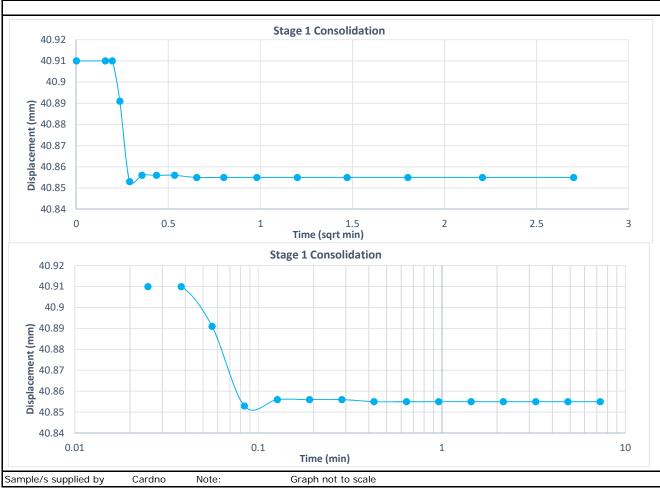
Report Number:

Order Number:

Report Date:

Direct Shear on Rock Report

Client: **Central Queensland Coal**


Address: Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Project Name: CQ Coal Styx Basin Geotechnical Investigatio Test Method

AS 1289.6.2.2

Location: STX1904G Page 4

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY HORINS

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

Direct Shear on Rock Report

Client: Central Queensland Coal

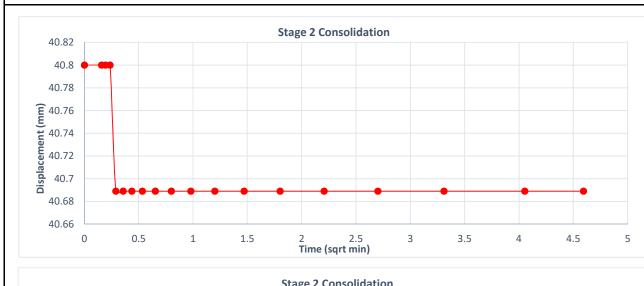
Address: Level 17, 240 Queen Street, Brisbane, QLD

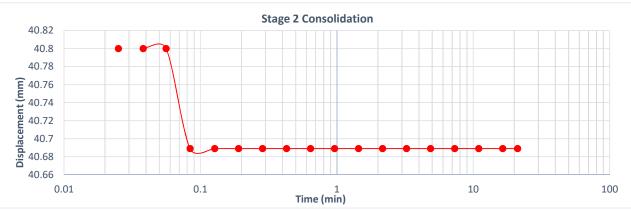
M30863

Project Name: CQ Coal Styx Basin Geotechnical Investigatid Test Method

Location: STX1904G

Project Number:


Report Number: 19-5480A


Report Date: 14/11/2019

Order Number: -

Test Method **AS 1289.6.2.2**

Page 5

Sample/s supplied by Cardno Note: Graph not to scale

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 Maggiolo Drive Paget, QLD 4740 P.O.Box 759, Mackay, QLD 4740 Tel: 07 4952 5255 Email: soils@cardno.com.au Web: www.cardno.com.au

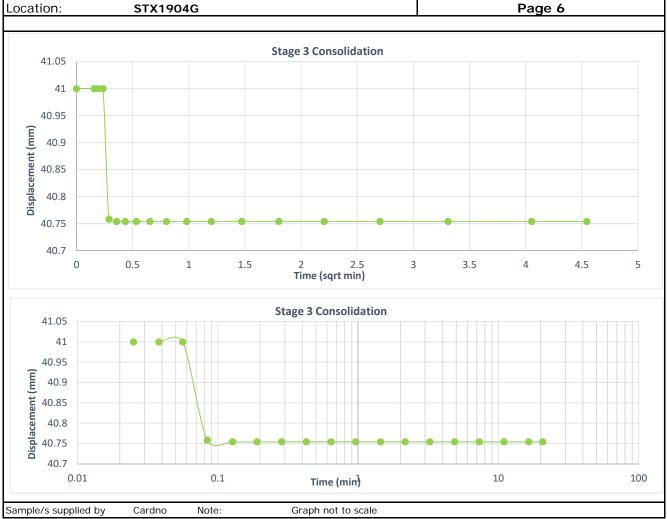
Direct Shear on Rock Report

Client: Central Queensland Coal

Level 17, 240 Queen Street, Brisbane, QLD

Project Number: M30863

Address:


Project Name: CQ Coal Styx Basin Geotechnical Investigatid Test Method

Report Number: 19-5480A

Report Date: 14/11/2019

Order Number:

Test Method **AS 1289.6.2.2**

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPROVED SIGNATORY

Derren Hoskins - Lab Manager NATA Accreditation Number 910 Mackay Laboratory

71 MAGGIOLO DRIVE MACKAY QLD

REPORT ON DETERMINATION OF UNIAXIAL COMPRESSIVE STRENGTH ROCK STRENGTH LESS THAN 50 MPa

Mackay Laboratory Sheet 1 of 1 CLIENT: Central Queensland Coal JOB NO.: M30863 LAB REF NO: 19-5456A ADDRESS: Level 17, 240 Queen Street, Brisbane Qld 4000 PROJECT: CQ Coal Styx Basin Geotechnical Investigation SAMPLED BY: Cardno **SAMPLE DATE:** 02-Sep-19 LOCATION: Styx Basin **TEST DATE: TESTED BY:** 24-Oct-19 MS **TEST PROCEDURES:** AS 4133.1.1.1; 4.2.2 (2013) **CHECKED BY: CHECK DATE:** ΑW 25-Oct-19

Borehole No.			STX1904G
Client sample nun	nber		ucs-8
Corrected Depth f	rom (m)		23.32
Corrected Depth t	o (m)		23.52
Stratigraphic horiz	on		-
Orientation of core	axis		Vertical
Lithological descri	ption		carbonaceous
			siltstone
Mass of sample (g	g)		942.4
Average sample d	liameter (mn	n)	60.9
Diameter variation	> 0.3mm?		No
Average height (m	nm)		162.4
Length / Diameter	ratio (ratio 2	2.5 to 3)	2.7
Cross sectional ar	rea (mm²)		2913
Uniaxial Comp. St	rength (MPa	1)	4.6
Number of specim	ens in samp	ole	1
Moisture content (%)		5.7
Density at as rece	ived moistur	re content (t/m ³)	1.99
Loading rate (N/m	in)		2500
Time to failure (mi	in)		5.29
Max. applied load	(kN)		13.5
Dominant structur		Before	After
with respect to co	re axis		
		N 559858	40.00
		100 To 10	
			1
			16
	(e) Tensile dominated		
Secant Young's Modulus (GPa)			N/A
Corrected Poisson's Ratio		N/A	
Remarks			

Storage History of Drilled by client, sampled by Cardno, wrapped and sealed, transported to Mackay laboratory.

specimens: Stored at room temperature and humidity and tested at as received moisture content.

Compression machine: Shimadzu U.E.H. -50 S/N 79097

Variations from standard: Time to failure less than standard 10 to 15 minutes.

Young's Modulus method: N/A Poisson's Ratio method: N/A

 Accredited No.
 910

 Certificate No.
 19-5456A

 Date of Issue
 25-Oct-19

71 MAGGIOLO DRIVE MACKAY QLD

REPORT ON DETERMINATION OF UNIAXIAL COMPRESSIVE STRENGTH ROCK STRENGTH LESS THAN 50 MPa

Mackay Laboratory Sheet 1 of 1 CLIENT: Central Queensland Coal JOB NO.: M30863 LAB REF NO: 19-5459A ADDRESS: Level 17, 240 Queen Street, Brisbane Qld 4000 PROJECT: CQ Coal Styx Basin Geotechnical Investigation SAMPLED BY: Cardno **SAMPLE DATE:** 02-Sep-19 LOCATION: Styx Basin **TESTED BY: TEST DATE:** 24-Oct-19 MS **TEST PROCEDURES: CHECKED BY: CHECK DATE:** AS 4133.1.1.1; 4.2.2 (2013) ΑW 25-Oct-19

Borehole No.	STX1904G
Client sample number	ucs-11
Corrected Depth from (m)	25.44
Corrected Depth to (m)	25.63
Stratigraphic horizon	-
Orientation of core axis	Vertical
Lithological description	siltstone
Mass of sample (g)	1042.1
Average sample diameter (mm)	60.8
Diameter variation > 0.3mm?	No
Average height (mm)	161.7
Length / Diameter ratio (ratio 2.5 to 3)	2.7
Cross sectional area (mm²)	2907
Uniaxial Comp. Strength (MPa)	3.3
Number of specimens in sample	1
Moisture content (%)	5.4
Density at as received moisture content (t/m ³)	2.22
Loading rate (N/min)	1250
Time to failure (min)	7.43
Max. applied load (kN)	9.5
Dominant structural features Before	After
with respect to core axis	
(e) Tensile dominated	ALL STATES
Secant Young's Modulus (GPa)	N/A
Corrected Poisson's Ratio	N/A
Remarks	

Storage History of Drilled by client, sampled by Cardno, wrapped and sealed, transported to Mackay laboratory.

specimens: Stored at room temperature and humidity and tested at as received moisture content.

Compression machine: Shimadzu U.E.H. -50 S/N 79097

Variations from standard: Time to failure less than standard 10 to 15 minutes.

Had a natural crack along a lamination that was glued prior to test.

Young's Modulus method: N/A Poisson's Ratio method: N/A

Accredited No.
Certificate No.
Date of Issue

910 19-5459A 25-Oct-19

71 MAGGIOLO DRIVE MACKAY QLD

REPORT ON DETERMINATION OF UNIAXIAL COMPRESSIVE STRENGTH ROCK STRENGTH LESS THAN 50 MPa

Mackay Laboratory Sheet 1 of 1 CLIENT: Central Queensland Coal JOB NO.: M30863 LAB REF NO: 19-5460A ADDRESS: Level 17, 240 Queen Street, Brisbane Qld 4000 PROJECT: CQ Coal Styx Basin Geotechnical Investigation SAMPLED BY: Cardno **SAMPLE DATE:** 02-Sep-19 LOCATION: Styx Basin **TESTED BY: TEST DATE:** 24-Oct-19 MS **TEST PROCEDURES: CHECKED BY: CHECK DATE:** AS 4133.1.1.1; 4.2.2 (2013) ΑW 25-Oct-19

Borehole No.		STX1904G
Client sample number		ucs-12
Corrected Depth from (m)		27.64
Corrected Depth to (m)		27.79
Stratigraphic horizon		-
Orientation of core axis		Vertical
Lithological description		carbonate
		intrusion
Mass of sample (g)		1052.3
Average sample diameter (mm	1)	60.8
Diameter variation > 0.3mm?		No
Average height (mm)		131.7
Length / Diameter ratio (ratio 2	.5 to 3)	2.2
Cross sectional area (mm²)		2903
Uniaxial Comp. Strength (MPa)	13.8
Number of specimens in samp	le	1
Moisture content (%)	2.3	
Density at as received moisture	2.75	
Loading rate (N/min)	5000	
Time to failure (min)	8.02	
Max. applied load (kN)		40.0
Dominant structural features	Before	After
with respect to core axis		
Secant Young's Modulus (GPa	N/A	
Corrected Poisson's Ratio	N/A	
Remarks		

Storage History of Drilled by client, sampled by Cardno, wrapped and sealed, transported to Mackay laboratory.

specimens: Stored at room temperature and humidity and tested at as received moisture content.

Compression machine: Shimadzu U.E.H. -50 S/N 79097

Variations from standard: Time to failure less than standard 10 to 15 minutes.

Height to diameter ratio less than 2.5 due to core structural features.

Young's Modulus method: N/A Poisson's Ratio method: N/A

Accredited No.
Certificate No.
Date of Issue

910 19-5460A 25-Oct-19

71 MAGGIOLO DRIVE MACKAY QLD

REPORT ON DETERMINATION OF UNIAXIAL COMPRESSIVE STRENGTH ROCK STRENGTH LESS THAN 50 MPa

Mackay Laboratory Sheet 1 of 1 CLIENT: Central Queensland Coal JOB NO.: M30863 LAB REF NO: 19-5463A ADDRESS: Level 17, 240 Queen Street, Brisbane Qld 4000 PROJECT: CQ Coal Styx Basin Geotechnical Investigation SAMPLED BY: Cardno **SAMPLE DATE:** 02-Sep-19 LOCATION: Styx Basin **TEST DATE: TESTED BY:** 24-Oct-19 MS **TEST PROCEDURES:** AS 4133.1.1.1; 4.2.2 (2013) **CHECKED BY: CHECK DATE:** ΑW 25-Oct-19

Borehole No.		STX1904G
Client sample number		ucs-15
Corrected Depth from (m)		29.5
Corrected Depth to (m)		29.7
Stratigraphic horizon		-
Orientation of core axis		Vertical
Lithological description		siltstone
Mass of sample (g)		1156.9
Average sample diameter (mm)	60.8
Diameter variation > 0.3mm?		No
Average height (mm)		160.1
Length / Diameter ratio (ratio 2	.5 to 3)	2.6
Cross sectional area (mm²)		2903
Uniaxial Comp. Strength (MPa))	4.3
Number of specimens in samp	le	1
Moisture content (%)		3
Density at as received moisture content (t/m³)		2.49
Loading rate (N/min)		2500
Time to failure (min)		5.01
Max. applied load (kN)		12.5
Dominant structural features	Before	After
with respect to core axis		
(c) Mixed made		
Secant Young's Modulus (GPa)		N/A
Corrected Poisson's Ratio		N/A
Remarks		

Storage History of Drilled by client, sampled by Cardno, wrapped and sealed, transported to Mackay laboratory.

specimens: Stored at room temperature and humidity and tested at as received moisture content.

Compression machine: Shimadzu U.E.H. -50 S/N 79097

Variations from standard: Time to failure less than standard 10 to 15 minutes.

Young's Modulus method: N/A Poisson's Ratio method: N/A

Accredited No. Certificate No. Date of Issue

910 19-5463A 25-Oct-19

71 MAGGIOLO DRIVE MACKAY QLD

REPORT ON DETERMINATION OF UNIAXIAL COMPRESSIVE STRENGTH ROCK STRENGTH LESS THAN 50 MPa

Mackay Laboratory Sheet 1 of 1 CLIENT: Central Queensland Coal JOB NO.: M30863 LAB REF NO: 19-5470A ADDRESS: Level 17, 240 Queen Street, Brisbane Qld 4000 PROJECT: CQ Coal Styx Basin Geotechnical Investigation SAMPLED BY: Cardno **SAMPLE DATE:** 02-Sep-19 LOCATION: Styx Basin **TEST DATE: TESTED BY:** 24-Oct-19 MS **TEST PROCEDURES:** AS 4133.1.1.1; 4.2.2 (2013) **CHECKED BY: CHECK DATE:** ΑW 25-Oct-19

Borehole No.		STX1904G
Client sample number		ucs-22
Corrected Depth from (m)		40.89
Corrected Depth to (m)		41.06
Stratigraphic horizon		-
Orientation of core axis		Vertical
Lithological description		siltstone
Mass of sample (g)		1158.6
Average sample diameter (mn	n)	60.9
Diameter variation > 0.3mm?		No
Average height (mm)		159.4
Length / Diameter ratio (ratio 2	2.5 to 3)	2.6
Cross sectional area (mm ²)		2913
Uniaxial Comp. Strength (MPa	1)	30.9
Number of specimens in samp	ole	1
Moisture content (%)		1.8
Density at as received moisture content (t/m³)		2.50
Loading rate (N/min)		12500
Time to failure (min)		7.16
Max. applied load (kN)		90.0
Dominant structural features	Before	After
with respect to core axis		
	Control of the contro	59
		F 3000
]] }		
	1000	
(e) Tensile dominated		
Secant Young's Modulus (GPa)		N/A
Corrected Poisson's Ratio		N/A
Remarks		

Storage History of Drilled by client, sampled by Cardno, wrapped and sealed, transported to Mackay laboratory.

specimens: Stored at room temperature and humidity and tested at as received moisture content.

Compression machine: Shimadzu U.E.H. -50 S/N 79097

Variations from standard: Time to failure less than standard 10 to 15 minutes.

Young's Modulus method: N/A Poisson's Ratio method: N/A

Accredited No. Certificate No. Date of Issue

910 19-5470A 25-Oct-19

71 MAGGIOLO DRIVE MACKAY QLD

REPORT ON DETERMINATION OF UNIAXIAL COMPRESSIVE STRENGTH ROCK STRENGTH GREATER THAN 50 MPa

Mackay Laboratory Sheet 1 of 1 CLIENT: Central Queensland Coal JOB NO.: M30863 LAB REF NO: 19-5474A ADDRESS: Level 17, 240 Queen Street, Brisbane Qld 4000 PROJECT: CQ Coal Styx Basin Geotechnical Investigation SAMPLED BY: Cardno **SAMPLE DATE:** 02-Sep-19 LOCATION: Styx Basin **TEST DATE: TESTED BY:** 24-Oct-19 MS **TEST PROCEDURES:** AS 4133.1.1.1; 4.2.1 (2007) **CHECKED BY: CHECK DATE:** ΑW 25-Oct-19

Borehole No.		STX1904G
Client sample number		ucs-26
Corrected Depth from (m)		43.6
Corrected Depth to (m)		43.8
Stratigraphic horizon		-
Orientation of core axis		Vertical
Lithological description		sandstone
Mass of sample (g)		1263.2
Average sample diameter (mm	า)	61
Diameter variation > 0.3mm?		No
Average height (mm)		161
Length / Diameter ratio (ratio 2	2.5 to 3)	2.6
Cross sectional area (mm ²)		2922
Uniaxial Comp. Strength (MPa	1)	53.4
Number of specimens in samp	ole	1
Moisture content (%)		1
Density at as received moisture content (t/m³)		2.68
Loading rate (N/min)		12500
Time to failure (min)		11.17
Max. applied load (kN)		156.2
Dominant structural features	Before	After
with respect to core axis		
	1	
	100000	
		3
	-	
(e) Tensile dominated		
Secant Young's Modulus (GPa)		N/A
Corrected Poisson's Ratio		N/A
Remarks		

Storage History of

Drilled by client, sampled by Cardno, wrapped and sealed, transported to Mackay laboratory.

specimens: Stored at room temperature and humidity and tested at as received moisture content.

Compression machine: Shimadzu U.E.H. -50 S/N 79097

Variations from standard:

Young's Modulus method: N/A Poisson's Ratio method: N/A

Accredited No. Certificate No. Date of Issue

910 19-5474A 25-Oct-19

71 MAGGIOLO DRIVE MACKAY QLD

REPORT ON DETERMINATION OF UNIAXIAL COMPRESSIVE STRENGTH ROCK STRENGTH LESS THAN 50 MPa

Mackay Laboratory Sheet 1 of 1 CLIENT: Central Queensland Coal JOB NO.: M30863 LAB REF NO: 19-5482A ADDRESS: Level 17, 240 Queen Street, Brisbane Qld 4000 PROJECT: CQ Coal Styx Basin Geotechnical Investigation SAMPLED BY: Cardno **SAMPLE DATE:** 02-Sep-19 LOCATION: Styx Basin **TEST DATE: TESTED BY:** 24-Oct-19 MS **TEST PROCEDURES:** AS 4133.1.1.1; 4.2.2 (2013) **CHECKED BY: CHECK DATE:** ΑW 25-Oct-19

Borehole No.		STX1904G
Client sample number		ucs-34
Corrected Depth from (m)		52.64
Corrected Depth to (m)		52.82
Stratigraphic horizon		-
Orientation of core axis		Vertical
Lithological description		siltstone
Mass of sample (g)		1113.9
Average sample diameter (mn	n)	60.9
Diameter variation > 0.3mm?		No
Average height (mm)		160.1
Length / Diameter ratio (ratio 2	2.5 to 3)	2.6
Cross sectional area (mm²)		2913
Uniaxial Comp. Strength (MPa	1)	8.8
Number of specimens in samp	ole	1
Moisture content (%)		2.5
Density at as received moisture content (t/m³)		2.39
Loading rate (N/min)		5000
Time to failure (min)		5.03
Max. applied load (kN)		25.5
Dominant structural features	Before	After
with respect to core axis		130
·		
	100000	
l Y I		
نـــــا		
(a) Single shear plane		
Secant Young's Modulus (GPa)		N/A
Corrected Poisson's Ratio		N/A
Remarks		

Storage History of Drilled by client, sampled by Cardno, wrapped and sealed, transported to Mackay laboratory.

specimens: Stored at room temperature and humidity and tested at as received moisture content.

Compression machine: Shimadzu U.E.H. -50 S/N 79097

Variations from standard: Time to failure less than standard 10 to 15 minutes.

Young's Modulus method: N/A Poisson's Ratio method: N/A

Accredited No.
Certificate No.
Date of Issue

910 19-5482A 25-Oct-19

71 MAGGIOLO DRIVE MACKAY QLD

REPORT ON DETERMINATION OF UNIAXIAL COMPRESSIVE STRENGTH ROCK STRENGTH LESS THAN 50 MPa

Mackay Laboratory Sheet 1 of 1 CLIENT: Central Queensland Coal JOB NO.: M30863 LAB REF NO: 19-5485A ADDRESS: Level 17, 240 Queen Street, Brisbane Qld 4000 PROJECT: CQ Coal Styx Basin Geotechnical Investigation SAMPLED BY: Cardno SAMPLE DATE: 02-Sep-19 LOCATION: Styx Basin **TEST DATE: TESTED BY:** 24-Oct-19 MS **TEST PROCEDURES:** AS 4133.1.1.1; 4.2.2 (2013) **CHECKED BY: CHECK DATE:** AW25-Oct-19

Borehole No.		STX1904G
Client sample number		ucs-37
Corrected Depth from (m)		55.62
Corrected Depth to (m)		55.79
Stratigraphic horizon		•
Orientation of core axis		Vertical
Lithological description		sandstone
Mass of sample (g)		1121.4
Average sample diameter (mn	n)	60.9
Diameter variation > 0.3mm?		No
Average height (mm)		158.5
Length / Diameter ratio (ratio 2	2.5 to 3)	2.6
Cross sectional area (mm²)		2913
Uniaxial Comp. Strength (MPa	1)	13.9
Number of specimens in samp	ole	1
Moisture content (%)		2.5
Density at as received moisture content (t/m³)		2.43
Loading rate (N/min)		5000
Time to failure (min)		8.12
Max. applied load (kN)		40.5
Dominant structural features	Before	After
with respect to core axis		
<u> </u>		
		P. No.
[] }	10.00	
	Coordinate	1500
(e) Tensile dominated		
Secant Young's Modulus (GPa)		N/A
Corrected Poisson's Ratio		N/A
Remarks		

Storage History of Drilled by client, sampled by Cardno, wrapped and sealed, transported to Mackay laboratory.

specimens: Stored at room temperature and humidity and tested at as received moisture content.

Compression machine: Shimadzu U.E.H. -50 S/N 79097

Variations from standard: Time to failure less than standard 10 to 15 minutes.

Young's Modulus method: N/A Poisson's Ratio method: N/A

Accredited No. Certificate No. Date of Issue

910 19-5485A 25-Oct-19

71 MAGGIOLO DRIVE MACKAY QLD

REPORT ON DETERMINATION OF UNIAXIAL COMPRESSIVE STRENGTH ROCK STRENGTH LESS THAN 50 MPa

Mackay Laboratory Sheet 1 of 1 CLIENT: Central Queensland Coal JOB NO.: M30863 LAB REF NO: 19-5498A ADDRESS: Level 17, 240 Queen Street, Brisbane Qld 4000 PROJECT: CQ Coal Styx Basin Geotechnical Investigation SAMPLED BY: Cardno **SAMPLE DATE:** 02-Sep-19 LOCATION: Styx Basin **TEST DATE: TESTED BY:** 24-Oct-19 MS **TEST PROCEDURES:** AS 4133.1.1.1; 4.2.2 (2013) **CHECKED BY: CHECK DATE:** ΑW 25-Oct-19

Borehole No.			STX1904G
Client sample num	ber		ucs-50
Corrected Depth fr	om (m)		77.63
Corrected Depth to	(m)		77.88
Stratigraphic horizo	on		-
Orientation of core	axis		Vertical
Lithological descrip	otion		siltstone
Mass of sample (g)		1126.6
Average sample di	,	n)	60.9
Diameter variation		,	No
Average height (m			158.7
Length / Diameter	-	2.5 to 3)	2.6
Cross sectional are		,	2913
Uniaxial Comp. Str	ength (MPa	a)	13.7
Number of specime	<u> </u>	/	1
Moisture content (%)		3.3	
Density at as received moisture content (t/m³)		2.44	
Loading rate (N/min)		5000	
Time to failure (min)		9.51	
Max. applied load (kN)		40.0	
Dominant structura	al features	Before	After
with respect to cor-	e axis	450	colina
		- Barrier	F 93
	Y		100
			3
		District to	
	(e) Tensile dominated		
Secant Young's Modulus (GPa)		N/A	
Corrected Poisson's Ratio		N/A	
Remarks			

Storage History of Drilled by client, sampled by Cardno, wrapped and sealed, transported to Mackay laboratory.

specimens: Stored at room temperature and humidity and tested at as received moisture content.

Compression machine: Shimadzu U.E.H. -50 S/N 79097

Variations from standard: Time to failure less than standard 10 to 15 minutes.

Young's Modulus method: N/A Poisson's Ratio method: N/A

Accredited No.
Certificate No.
Date of Issue

910 19-5498A 25-Oct-19

71 MAGGIOLO DRIVE MACKAY QLD

REPORT ON DETERMINATION OF UNIAXIAL COMPRESSIVE STRENGTH ROCK STRENGTH LESS THAN 50 MPa

Mackay Laboratory Sheet 1 of 1 CLIENT: Central Queensland Coal JOB NO.: M30863 LAB REF NO: 19-5499A ADDRESS: Level 17, 240 Queen Street, Brisbane Qld 4000 PROJECT: CQ Coal Styx Basin Geotechnical Investigation SAMPLED BY: Cardno **SAMPLE DATE:** 02-Sep-19 LOCATION: Styx Basin **TEST DATE: TESTED BY:** 24-Oct-19 MS **TEST PROCEDURES:** AS 4133.1.1.1; 4.2.2 (2013) **CHECKED BY: CHECK DATE:** ΑW 25-Oct-19

Borehole No.		STX1904G
Client sample number		ucs-51
Corrected Depth from (m)		85.16
Corrected Depth to (m)		85.36
Stratigraphic horizon		-
Orientation of core axis		Vertical
Lithological description		siltstone
Mass of sample (g)		1145.1
Average sample diameter (mn	n)	60.7
Diameter variation > 0.3mm?		No
Average height (mm)		160.3
Length / Diameter ratio (ratio 2	2.5 to 3)	2.6
Cross sectional area (mm ²)		2897
Uniaxial Comp. Strength (MPa	1)	1.7
Number of specimens in samp	ole	1
Moisture content (%)		3.2
Density at as received moisture content (t/m³)		2.47
Loading rate (N/min)		1250
Time to failure (min)		4.03
Max. applied load (kN)		5.0
Dominant structural features	Before	After
with respect to core axis		4
	OF THE REAL PROPERTY.	490
	D2.00	(F)(F)(F)
	(E) (E) (E)	(612) (83)
ľ	6000	1000
i	E0198	10000
(a) Single shear plane		
Secant Young's Modulus (GPa)		N/A
Corrected Poisson's Ratio		N/A
Remarks		

Storage History of Drilled by client, sampled by Cardno, wrapped and sealed, transported to Mackay laboratory.

specimens: Stored at room temperature and humidity and tested at as received moisture content.

Compression machine: Shimadzu U.E.H. -50 S/N 79097

Variations from standard: Time to failure less than standard 10 to 15 minutes.

Young's Modulus method: N/A Poisson's Ratio method: N/A

Accredited No. Certificate No. Date of Issue 910 19-5499A 25-Oct-19

CARDNO (QLD) PTY LTD

71 MAGGIOLO DRIVE MACKAY QLD

REPORT ON DETERMINATION OF UNIAXIAL COMPRESSIVE STRENGTH ROCK STRENGTH LESS THAN 50 MPa

Mackay Laboratory Sheet 1 of 1 CLIENT: Central Queensland Coal JOB NO.: M30863 LAB REF NO: 19-5506A ADDRESS: Level 17, 240 Queen Street, Brisbane Qld 4000 PROJECT: CQ Coal Styx Basin Geotechnical Investigation SAMPLED BY: Cardno **SAMPLE DATE:** 02-Sep-19 LOCATION: Styx Basin **TEST DATE: TESTED BY:** 24-Oct-19 MS **TEST PROCEDURES:** AS 4133.1.1.1; 4.2.2 (2013) **CHECKED BY: CHECK DATE:** ΑW 25-Oct-19

Borehole No.	STX1904G
Client sample number	ucs-58
Corrected Depth from (m)	100.54
Corrected Depth to (m)	100.75
Stratigraphic horizon	-
Orientation of core axis	Vertical
Lithological description	interlaminated
	sandstone and
	siltstone
Mass of sample (g)	1186.7
Average sample diameter (mm)	60.8
Diameter variation > 0.3mm?	No
Average height (mm)	160.2
Length / Diameter ratio (ratio 2.5 to 3)	2.6
Cross sectional area (mm²)	2907
Uniaxial Comp. Strength (MPa)	27.5
Number of specimens in sample	1
Moisture content (%)	1.8
Density at as received moisture content (t/m³)	2.55
Loading rate (N/min)	12500
Time to failure (min)	6.33
Max. applied load (kN)	80.0
Dominant structural features Before	After
with respect to core axis (e) Tensile dominated	
Secant Young's Modulus (GPa)	N/A
Demands	N/A
Remarks	

Storage History of Drilled by client, sampled by Cardno, wrapped and sealed, transported to Mackay laboratory.

specimens: Stored at room temperature and humidity and tested at as received moisture content.

Compression machine: Shimadzu U.E.H. -50 S/N 79097

Variations from standard: Time to failure less than standard 10 to 15 minutes.

Young's Modulus method: N/A Poisson's Ratio method: N/A

Accredited No. Certificate No. Date of Issue 910 19-5506A 25-Oct-19

Accredited for compliance with ISO/IEC 17025-testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australia/national standards.

Sheet 1 of 2

CARDNO (QLD) PTY LTD 71 MAGGIOLO DRIVE MACKAY QLD

REPORT ON POINT LOAD STRENGTH INDEX

Mackay Laboratory

 CLIENT:
 Central Queensland Coal
 JOB NO.:
 M30863
 LAB REF NO:
 Refer below

ADDRESS: Level 17, 240 Queen Street, Brisbane Qld 4000

PROJECT: CQ Coal Styx Basin Geotechnical Investigation

SAMPLED BY: Cardno

SAMPLE DATE: 02-Sep-19

LOCATION: Styx Basin

TEST PROCEDURE: AS4133.4.1 (2007)

 TESTED BY:
 MS
 TEST DATE:
 23-Oct-19

 CHECKED BY:
 AW
 CHECK DATE:
 25-Oct-19

Lab Ref No	Borehole	Material / Client sample Ref'	Depth From (m)	Depth To (m)	Test Type	D (mm)	P (kN)	I _{s (50)} (Mpa)	Rock Strength		
19-5455A	STX1904G	pl-7	22.52	22.62	Diametral	61	0.30	0.09	VERY LOW		
19-5455B	STX1904G	pl-7	22.52	22.62	Axial	32	0.70	0.28	LOW		
19-5457A	STX1904G	pl-9	24.00	24.12	Diametral	61	0.40	0.12	LOW		
19-5457B	STX1904G	pl-9	24.00	24.12	Axial	33	0.40	0.16	LOW		
19-5458A	STX1904G	pl-10	25.29	25.44	Diametral	61	0.02	0.01	EXTREMELY LOW		
19-5458B	STX1904G	pl-10	25.29	25.44	Axial	32	0.50	0.20	LOW		
19-5461A	STX1904G	pl-13	28.12	28.25	Diametral	61	0.60	0.18	LOW		
19-5461B	STX1904G	pl-13	28.12	28.25	Axial	32	0.60	0.24	LOW		
19-5462A	STX1904G	pl-14	28.62	28.71	Diametral	61	0.20	0.06	VERY LOW		
19-5462B	STX1904G	pl-14	28.62	28.71	Axial	32	1.20	0.49	MEDIUM		
19-5464A	STX1904G	pl-16	33.23	33.34	Diametral	61	0.10	0.03	EXTREMELY LOW		
19-5464B	STX1904G	pl-16	33.23	33.34	Axial	28	0.80	0.36	MEDIUM		
19-5465A	STX1904G	pl-17	33.37	33.47	Diametral	61	0.60	0.18	LOW		
19-5465B	STX1904G	pl-17	33.37	33.47	Axial	32	0.50	0.20	LOW		
19-5467A	STX1904G	pl-19	35.95	36.07	Diametral	61	0.20	0.06	VERY LOW		
19-5467B	STX1904G	pl-19	35.95	36.07	Axial	33	0.40	0.16	LOW		
19-5468A	STX1904G	pl-20	39.64	39.78	Diametral	61	0.20	0.06	VERY LOW		
19-5468B	STX1904G	pl-20	39.64	39.78	Axial	33	0.80	0.32	MEDIUM		
19-5469A	STX1904G	pl-21	40.33	40.48	Diametral	61	1.10	0.32	MEDIUM		
19-5469B	STX1904G	pl-21	40.33	40.48	Axial	32	0.70	0.28	LOW		
19-5471A	STX1904G	pl-23	41.06	41.18	Diametral	61	1.40	0.41	MEDIUM		
19-5471B	STX1904G	pl-23	41.06	41.18	Axial	31	3.50	1.44	HIGH		
19-5473A	STX1904G	pl-25	43.47	43.60	Diametral	61	1.60	0.47	MEDIUM		
19-5473B	STX1904G	pl-25	43.47	43.60	Axial	32	4.90	1.97	HIGH		
19-5475A	STX1904G	pl-27	44.12	44.23	Diametral	61	4.90	1.44	HIGH		
19-5475B	STX1904G	pl-27	44.12	44.23	Axial	32	9.30	3.77	VERY HIGH		
19-5476A	STX1904G	pl-28	44.50	44.61	Diametral	61	0.50	0.15	LOW		
19-5476B	STX1904G	pl-28	44.50	44.61	Axial	34	3.00	1.15	HIGH		
19-5477A	STX1904G	pl-29	45.96	46.19	Diametral	61	0.50	0.15	LOW		
19-5477B	STX1904G	pl-29	45.96	46.19	Axial	32	0.80	0.32	MEDIUM		

Notes: Moisture contents of each specimen was not determined.

Accredited No.
Certificate No.
Date of Issue:

910 19-5455A 25-Oct-19

Accredited for compliance with ISO/IEC 17025-testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australia/national standards.

Mackay Laboratory

Sheet 2 of 2

CARDNO (QLD) PTY LTD

71 MAGGIOLO DRIVE MACKAY QLD

REPORT ON POINT LOAD STRENGTH INDEX

CLIENT: Central Queensland Coal JOB NO.: M30863 LAB REF NO: Refer below

ADDRESS: Level 17, 240 Queen Street, Brisbane Qld 4000

PROJECT: CQ Coal Styx Basin Geotechnical Investigation 02-Sep-19 **SAMPLED BY:** Cardno **SAMPLE DATE: TESTED BY:** MS **TEST DATE:** 23-Oct-19

LOCATION: Styx Basin

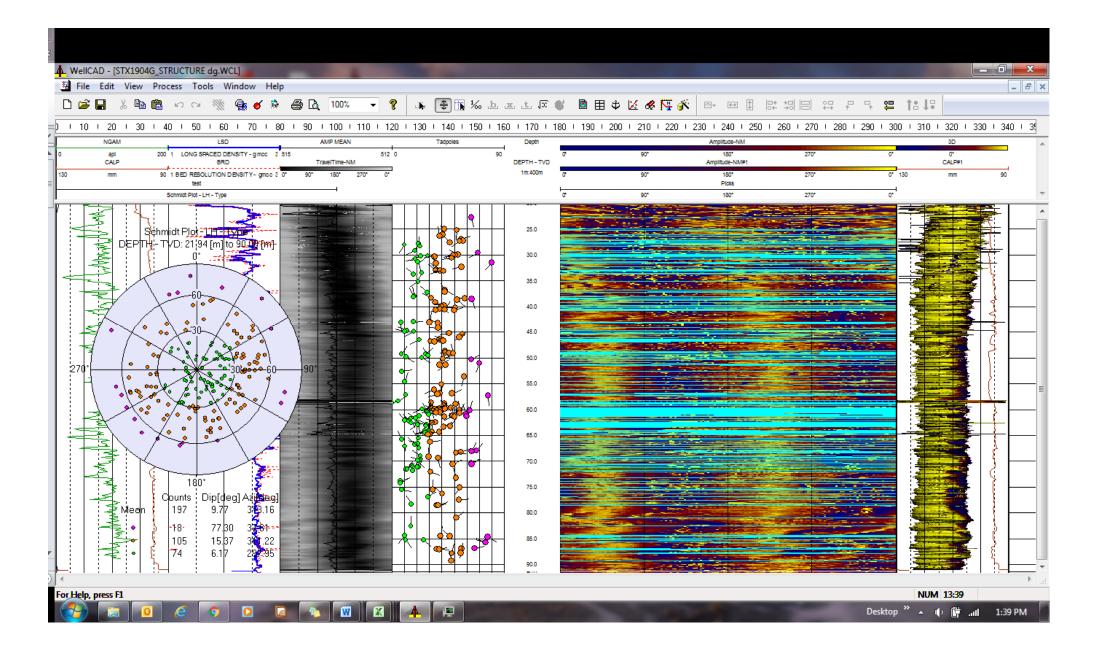
TEST PROCEDURE: AS4133.4.1 (2007) **CHECKED BY:** AW **CHECK DATE:** 25-Oct-19

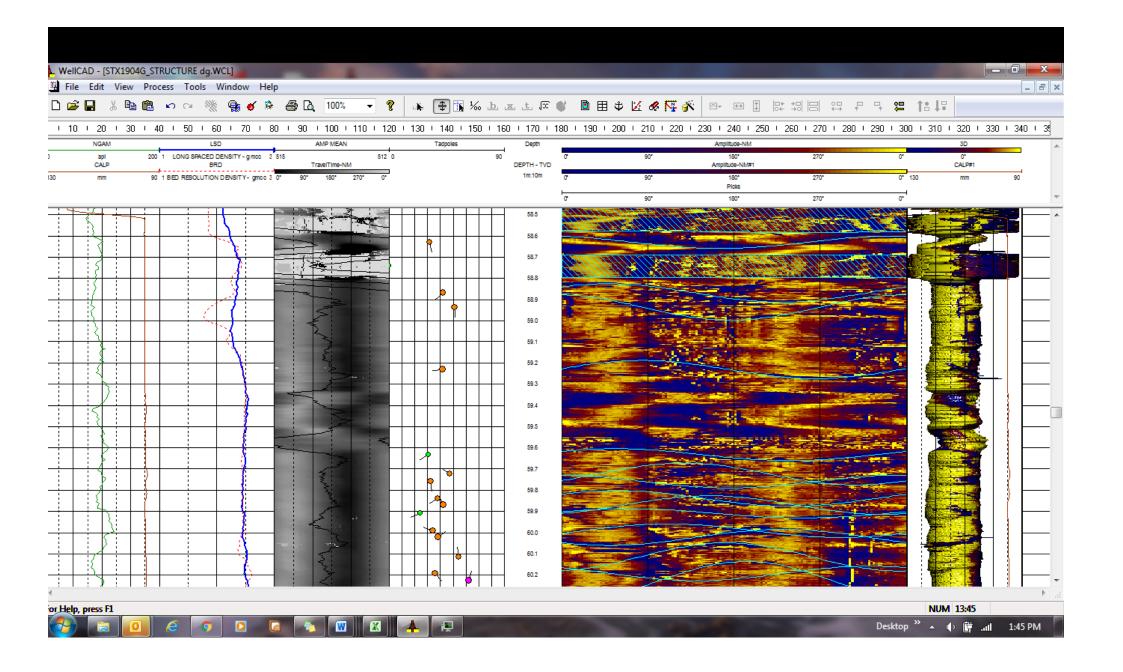
Lab Ref No	Borehole	Material / Client sample Ref'	Depth From (m)	Depth To (m)	Test Type	est Type D (mm)		I _{s (50)} (Mpa)	Rock Strength	
19-5478A	STX1904G	pl-30	46.78	46.92	Diametral	61	1.00	0.29	LOW	
19-5478B	STX1904G	pl-30	46.78	46.92	Axial	31	1.10	0.45	MEDIUM	
19-5481A	STX1904G	pl-33	52.37	52.50	Diametral	61	0.06	0.02	EXTREMELY LOW	
19-5481B	STX1904G	pl-33	52.37	52.50	Axial	31	0.10	0.04	VERY LOW	
19-5483A	STX1904G	pl-35	53.28	53.39	Diametral	61	1.00	0.29	LOW	
19-5483B	STX1904G	pl-35	53.28	53.39	Axial	32	1.10	0.44	MEDIUM	
19-5484A	STX1904G	pl-36	53.78	53.88	Diametral	62	1.20	0.34	MEDIUM	
19-5484B	STX1904G	pl-36	53.78	53.88	Axial	32	2.10	0.84	MEDIUM	
19-5486A	STX1904G	pl-38	55.79	55.94	Diametral	61	1.20	0.35	MEDIUM	
19-5486B	STX1904G	pl-38	55.79	55.94	Axial	33	2.90	1.15	HIGH	
19-5489A	STX1904G	pl-41	61.40	61.56	Diametral	61	0.50	0.15	LOW	
19-5489B	STX1904G	pl-41	61.40	61.56	Axial	32	6.30	2.51	HIGH	
19-5491A	STX1904G	pl-43	62.78	62.88	Diametral	61	0.60	0.18	LOW	
19-5491B	STX1904G	pl-43	62.78	62.88	Axial	32	0.05	0.02	EXTREMELY LOW	
19-5493A	STX1904G	pl-45	70.46	70.58	Diametral	61	2.40	0.70	MEDIUM	
19-5493B	STX1904G	pl-45	70.46	70.58	Axial	32	4.60	1.85	HIGH	
19-5495A	STX1904G	pl-47	71.12	71.24	Diametral	61	1.60	0.47	MEDIUM	
19-5495B	STX1904G	pl-47	71.12	71.24	Axial	32	2.20	0.89	MEDIUM	
19-5496A	STX1904G	pl-48	75.65	75.78	Diametral	60	0.20	0.06	VERY LOW	
19-5496B	STX1904G	pl-48	75.65	75.78	Axial	32	0.60	0.24	LOW	
19-5497A	STX1904G	pl-49	76.47	76.60	Diametral	61	0.10	0.03	EXTREMELY LOW	
19-5497B	STX1904G	pl-49	76.47	76.60	Axial	31	2.00	0.83	MEDIUM	
19-5500A	STX1904G	pl-52	88.40	88.54	Diametral	61	0.01	0.00	EXTREMELY LOW	
19-5500B	STX1904G	pl-52	88.40	88.54	Axial	32	1.00	0.40	MEDIUM	
19-5501A	STX1904G	pl-53	92.58	92.61	Diametral	61	1.00	0.29	LOW	
19-5501B	STX1904G	pl-53	92.58	92.61	Axial	33	1.50	0.60	MEDIUM	
19-5503A	STX1904G	pl-55	97.96	98.09	Diametral	61	4.90	1.44	HIGH	
19-5503B	STX1904G	pl-55	97.96	98.09	Axial	32	4.80	1.94	HIGH	
19-5505A	STX1904G	pl-57	100.42	100.54	Diametral	61	1.80	0.53	MEDIUM	
19-5505B	STX1904G	pl-57	100.42	100.54	Axial	32	3.30	1.32	HIGH	

Notes: Moisture contents of each specimen was not determined.

910 Accredited No. Certificate No. 19-5478A Date of Issue: 25-Oct-19

Accredited for compliance with ISO/IEC 17025-testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australia/national standards.




APPENDIX

Е

ACCOUSTIC TELEVIEWER LOGGING

Depth	Azimuth	Dip	Aperture Type	Group Interp
m	deg	deg	mm	
22.75	166.49	63.88	0	2 Fracture
24.98	224.47	42.16	0	3 Fracture
25.18	186.08	52.20	0	3 Fracture
26.13	349.56	40.71	0	3 Fracture
26.36	349.72	38.27	0	3 Fracture
26.90	71.35	55.60	0	3 Intrusion
27.25	247.26	56.99	0	3 Fracture
27.33	235.48	54.57	0	3 Fracture
27.59	315.95	46.50	0	3 Fracture
27.80	211.40	21.52	0	1 Intrusion
28.03	212.92	9.99	0	1 Bedding
28.33	353.67	22.33	0	5 Fracture
29.17	245.49	18.22	0	1 Fracture
29.59	241.75	69.14	0	2 Fracture
29.92	297.30	53.02	0	3 Fracture
29.98	257.28	50.57	0	3 Fracture
30.04	259.73	49.28	0	3 Fracture
30.15	230.66	28.63	0	1 Fracture
30.24	251.15	23.13	0	1 Fracture
30.36	266.90	34.11	0	3 Fracture
30.61	264.24	47.99	0	3 Fracture
30.83	262.04	18.80	0	1 Bedding
31.39	162.94	20.92	0	5 Fracture
31.52	222.85	80.18	0	2 Fracture
31.65	336.84	35.29	0	3 Fracture
32.31	258.09	55.77	0	3 Fracture
32.87	318.81	35.71	0	3 Fracture
32.94	312.06	35.06	0	3 Fracture
33.06	252.06	38.58	0	3 Fracture
33.13	270.81	41.56	0	3 Fracture
33.53	211.32	24.04	0	1 Bedding
33.73	313.01	17.01	0	5 Bedding
35.13	238.07	21.09	0	1 Fracture
36.77	117.70	42.35	0	3 Fracture
37.16	335.68	42.37	0	3 Fracture
37.24	313.57	28.54	0	5 Fracture
38.02	347.30	18.02	0	5 Fracture
38.09	334.49	17.36	0	5 Bedding
38.32	299.53	31.50	0	3 Fracture
38.46	277.48	58.44	0	3 Fracture
38.57	160.28	64.20	0	2 Fracture
38.74	129.09	52.34	0	3 Fracture
			_	
39.18	108.87	34.95 41.06	0	3 Fracture
39.72	278.45	41.96	0	3 Fracture
39.89	136.32	39.70	0	3 Fracture
40.16	269.37	50.96	0	3 Fracture
40.42	255.46	38.44	0	3 Fracture
40.58	32.11	42.42	0	3 Fracture

Depth	Azimuth	Dip	Aperture Type	Group Interp
 m	deg	deg	mm	2 5
40.68	38.47	35.07	0	3 Fracture
40.77	70.34	50.08	0	3 Fracture
42.95	89.15	17.09	0	5 Fracture
43.04	10.56	30.12	0	3 Fracture
43.08	176.86	7.35	0	1 Fracture
43.20	293.50	36.88	0	3 Fracture
44.20	272.80	37.22	0	3 Bedding
44.73	293.04	12.08	0	4 Bedding
44.91	241.88	17.57	0	5 Fracture
44.93	286.81	10.46	0	4 Bedding
45.26	262.59	46.11	0	3 Fracture
45.41	232.24	56.73	0	3 Fracture
46.01	53.62	54.17	0	3 Fracture
46.43	272.62	38.33	0	3 Fracture
46.53	245.94	21.95	0	5 Fracture
46.72	299.42	41.31	0	3 Fracture
46.78	84.18	30.93	0	3 Fracture
46.83	65.64	34.10	13.26	3 Fracture
48.66	146.75	42.67	0	3 Fracture
48.97	215.29	43.15	0	3 Fracture
49.07	271.38	46.11	0	3 Fracture
49.11	348.77	49.09	0	3 Fracture
49.26	34.58	7.64	0	4 Bedding
49.30	49.36	27.10	0	5 Fracture
49.59	325.35	29.17	0	5 Fracture
49.82	120.02	11.31	0	5 Bedding
49.90	124.69	23.97	0	5 Fracture
50.15	70.78	40.97	0	3 Fracture
50.35	61.14	63.71	0	2 Fracture
51.00	197.66	70.08	0	2 Fracture
51.34	59.33	38.22	0	3 Fracture
51.37	235.06	43.17	0	3 Fracture
52.61	81.89	7.99	0	5 Bedding
53.65	193.27	57.78	0	3 Fracture
54.58	19.03	10.31	0	4 Bedding
55.17	188.98	39.84	9.14	3 Fracture
56.15	248.43	33.89	0	3 Fracture
56.88	22.09	38.23	0	3 Fracture
56.92	68.13	48.40	0	3 Fracture
57.04	255.77	36.62	0	3 Fracture
57.20	226.16	11.07	0	1 Bedding
57.32	176.40	77.30	0	2 Fracture
58.38	253.35	4.88	400.75	6 Fracture
58.63	165.23	31.49	0	3 Fracture
58.74	0.00	0.00	106.08	6 Fracture
58.87	228.91	42.23	0	3 Fracture
58.94	177.00	51.26	0	3 Fracture
59.23	264.48	41.91	0	3 Fracture
· - ·	_ 3 0		•	_ : : : : : : : : : : : : : : : : : : :

Depth	Azimuth	Dip	Aperture Type	Group Interp
m 59.63	deg 237.59	deg 30.61	mm 0	 3 Fracture
59.72	306.81	47.48	0	3 Fracture
59.76	175.55	32.51	0	3 Fracture
59.84	238.01	38.05	0	3 Fracture
59.87	334.93	42.39	0	3 Fracture
59.91	250.32	24.33	0	5 Fracture
59.99	291.10	34.08	0	3 Fracture
60.02	49.99	38.52	0	3 Fracture
60.11	351.44	54.32	0	3 Fracture
60.19	140.68	35.94	0	3 Fracture
60.23	12.15	62.38	0	2 Fracture
60.34	21.28	27.99	0	5 Fracture
60.43	23.81	27.71	0	5 Fracture
60.49	336.09	28.24	0	5 Fracture
60.55	300.35	38.68	0	3 Fracture
60.64	273.77	35.46	0	3 Fracture
60.68	23.53	54.40	0	3 Fracture
60.87	343.41	59.50	0	2 Fracture
60.95	27.52	29.44	0	5 Fracture
61.14	51.57	48.26	0	3 Fracture
61.15	238.97	48.84	0	3 Fracture
61.27	268.43	21.88	0	5 Fracture
61.31	10.45	59.89	0	2 Fracture
61.38	337.86	50.34	0	3 Fracture
61.42	342.01	42.31	0	3 Fracture
61.72	301.83	19.25	0	5 Fracture
61.75	151.66	14.87	0	5 Bedding
62.15	323.95	10.39	0	4 Bedding
62.25	318.23	13.55	0	4 Bedding
62.49	290.77	34.91	0	3 Fracture
62.61	181.90	32.29	0	3 Fracture
62.61	316.10	15.52	0	4 Fracture
62.74	229.68	20.43	18.28	1 Fracture
62.91	165.18	20.92	0	5 Fracture
62.92	302.20	27.93	0	5 Fracture
62.98	287.05	27.76	0	5 Fracture
63.15	62.48	27.01	9.36	5 Fracture
63.24	33.00	46.97	12.29	3 Fracture
63.36	58.46	41.45	12	3 Fracture
64.09	255.00	29.53	0	5 Fracture
64.12	252.88	26.35	0	5 Fracture
64.32	252.80	32.23	0	3 Fracture
64.39	270.37	37.93	15	3 Fracture
64.54	263.15	26.49	0	5 Fracture
64.79	1.86	30.35	0	3 Fracture
64.84	4.90	28.78	12.28	3 Fracture
65.57	323.71	21.27	0	5 Fracture
65.80	333.90	7.91	0	4 Bedding
03.00	555.50	1.51	U	- Deduing

66.24 81.96 30.67 0 3 Fracture 66.64 289.94 20.96 0 4 Fracture 66.76 317.05 18.19 0 4 Fracture 67.12 181.90 10.41 0 5 Fracture 68.01 40.52 67.72 0 2 Fracture 68.01 40.52 67.72 0 2 Fracture 68.09 29.07 64.04 0 2 Fracture 68.28 70.03 55.38 0 3 Fracture 69.20 357.37 29.62 0 3 Fracture 69.20 357.37 29.62 0 3 Fracture 69.35 168.67 37.16 0 3 Fracture 69.89 138.30 20.68 0 5 Fracture 69.89 138.30 20.68 0 5 Fracture 69.89 138.30 20.68 0 5 Fracture 70.36 70.98 63.63 0 2 Fracture 70.36 64.06 48.91 0 3 Fracture 70.90 241.18 16.00 0 1 Fracture 71.14 22.16 21.68 9.76 4 Fracture 71.14 22.16 21.68 9.76 4 Fracture 71.78 25.12 16.84 0 4 Bedding 72.02 109.13 30.99 0 3 Fracture 73.24 346.97 51.38 0 3 Fracture 75.49 0.88 32.65 0 5 Bedding 74.27 56.42 6.56 0 5 Bedding 75.13 215.87 54.55 0 3 Fracture 76.92 58.62 28.84 0 5 Fracture 77.53 82.86 53.75 0 3 Fracture 78.57 99.41 7.96 0 5 Bedding 76.28 311.46 40.30 27.18 3 Fracture 77.53 82.86 53.75 0 3 Fracture 78.57 68.88 37.27 0 3 Fracture 88.439 219.00 10.28 0 4 Bedding 88.446 8.22 38.87 0 3 Fracture 88.57 68.68 77.67 66.37 0 2 Fracture 88.710 92.81 38.08 0 3 Intrusion	Depth	Azimuth	Dip	Aperture Type	Group Interp
66.64 289.94 20.96 0 4 Fracture 66.76 317.05 18.19 0 4 Fracture 67.12 181.90 10.41 0 5 Fracture 67.53 320.83 21.76 0 5 Fracture 68.01 40.52 67.72 0 2 Fracture 68.09 29.07 64.04 0 2 Fracture 68.28 70.03 55.38 0 3 Fracture 69.20 357.37 29.62 0 3 Fracture 69.20 357.37 29.62 0 3 Fracture 69.35 168.67 37.16 0 3 Fracture 69.35 168.67 37.16 0 3 Fracture 69.89 138.30 20.68 0 5 Fracture 70.36 70.98 63.63 0 2 Fracture 70.60 50.97 64.07 0 2 Fracture 70.61 64.06 48.91 0 3 Fracture 70.90 241.18 16.00 0 1 Fracture 71.14 22.16 21.68 9.76 4 Fracture 71.54 46.97 12.25 0 4 Bedding 71.78 25.12 16.84 0 4 Bedding 72.02 109.13 30.99 0 3 Fracture 73.85 69.36 6.85 0 5 Bedding 74.27 56.42 6.56 0 5 Bedding 74.27 56.42 6.56 0 5 Bedding 75.13 215.87 54.55 0 3 Fracture 75.57 99.41 7.96 0 5 Bedding 76.28 311.46 40.30 27.18 3 Fracture 77.53 82.86 53.75 0 3 Fracture 78.29 32.815 15.51 0 4 Bedding 78.55 83.67 35.67 8.54 3 Fracture 78.57 68.68 37.27 0 3 Fracture 78.59 32.815 15.51 0 4 Bedding 78.55 83.67 35.67 8.54 3 Fracture 78.57 68.68 37.27 0 3 Fracture 78.59 32.815 15.51 0 4 Bedding 78.55 83.67 35.67 8.54 3 Fracture 78.57 68.68 37.27 0 3 Fracture 78.59 32.815 15.51 0 4 Bedding 78.55 83.67 35.67 8.54 3 Fracture 78.59 32.815 15.51 0 4 Bedding 78.55 83.67 35.67 8.54 3 Fracture 78.59 32.815 15.51 0 4 Bedding 78.55 83.67 35.67 8.54 3 Fracture 78.59 32.815 15.51 0 4 Bedding 78.55 83.67 35.67 8.54 3 Fracture 78.59 32.815 15.51 0 4 Bedding 78.55 83.67 35.67 8.54 3 Fracture 78.59 32.815 15.51 0 4 Bedding 84.46 8.22 38.87 0 3 Fracture 85.52 1.63 15.28 0 4 Bedding 84.46 8.22 38.87 0 3 Fracture 85.52 1.63 15.28 0 4 Bedding 84.46 8.22 38.87 0 5 Fracture 85.72 291.83 75.01 0 2 Fracture 85.72 291.83 75.01 0 2 Fracture 85.72 291.83 75.01 0 2 Fracture 85.73 284.49 75.19 0 2 Fracture 86.88 77.67 66.37 0 2 Fracture 87.06 83.55 35.89 0 3 Fracture	 66.24	91.96	deg		
66.76 317.05 18.19 0 4 Fracture 67.12 181.90 10.41 0 5 Fracture 67.53 320.83 21.76 0 5 Fracture 68.01 40.52 67.72 0 2 Fracture 68.09 29.07 64.04 0 2 Fracture 68.28 70.03 55.38 0 3 Fracture 68.37 94.62 51.58 0 3 Fracture 69.20 357.37 29.62 0 3 Fracture 69.21 183.30 20.68 0 5 Fracture 69.89 138.30 20.68 0 5 Fracture 69.89 138.30 20.68 0 5 Fracture 70.36 70.98 63.63 0 2 Fracture 70.60 50.97 64.07 0 2 Fracture 70.61 64.06 48.91 0 3 Fracture 70.90 241.18 16.00 0 1 Fracture 71.14 22.16 21.68 9.76 4 Fracture 71.14 22.16 21.68 9.76 4 Fracture 71.54 46.97 12.25 0 4 Bedding 71.78 25.12 16.84 0 4 Bedding 72.02 109.13 30.99 0 3 Fracture 73.24 346.97 51.38 0 3 Fracture 75.49 0.88 32.65 0 5 Bedding 74.27 56.42 6.56 0 5 Bedding 75.13 215.87 54.55 0 3 Fracture 75.89 328.15 15.51 0 4 Bedding 76.28 311.46 40.30 27.18 3 Fracture 77.85 83.67 35.67 8.54 3 Fracture 78.59 328.15 15.51 0 4 Bedding 78.57 68.68 37.27 0 3 Fracture 78.59 328.15 15.51 0 4 Bedding 78.57 68.68 37.27 0 3 Fracture 78.59 328.15 15.51 0 4 Bedding 78.57 68.68 37.27 0 3 Fracture 78.59 328.15 15.51 0 4 Bedding 78.57 68.68 37.27 0 3 Fracture 78.59 328.15 15.51 0 4 Bedding 78.57 68.68 37.27 0 3 Fracture 78.59 328.15 15.51 0 4 Bedding 78.57 68.68 37.27 0 3 Fracture 78.59 328.15 15.51 0 4 Bedding 78.57 68.68 37.27 0 3 Fracture 78.59 328.15 15.51 0 4 Bedding 78.57 68.68 37.27 0 3 Fracture 78.59 328.15 15.51 0 4 Bedding 78.57 68.68 37.27 0 3 Fracture 78.59 328.15 15.51 0 5 Bedding 78.57 68.68 37.27 0 3 Fracture 78.59 328.15 15.51 0 5 Bedding 78.57 68.68 37.27 0 3 Fracture 78.59 328.15 15.51 0 5 Bedding 78.57 68.68 37.27 0 3 Fracture 78.59 328.15 15.51 0 5 Bedding 78.57 68.68 37.57 0 3 Fracture 88.59 311.16 46.50 0 3 Fracture 88.50 311.16 46.50 0 3 Fracture 88.50 311.17 0 5 Bedding 88.40 219.00 10.28 0 1 Bedding 88.40 22 38.87 0 3 Fracture 88.50 311.10 46.50 0 3 Fracture 88.50 311.50 25.35 0 5 Fracture 85.72 291.83 75.01 0 2 Fracture 86.88 77.67				_	
67.12 181.90 10.41 0 5 Fracture 67.53 320.83 21.76 0 5 Fracture 68.01 40.52 67.72 0 2 Fracture 68.09 29.07 64.04 0 2 Fracture 68.28 70.03 55.38 0 3 Fracture 68.37 94.62 51.58 0 3 Fracture 69.01 303.97 22.88 0 5 Fracture 69.02 357.37 29.62 0 3 Fracture 69.35 168.67 37.16 0 3 Fracture 69.35 168.67 37.16 0 5 Fracture 69.82 138.30 20.68 0 5 Fracture 69.89 138.30 20.68 0 5 Fracture 70.36 70.98 63.63 0 2 Fracture 70.36 70.98 63.63 0 7 Fracture 70.61 64.06 48.91 0 7 Fracture 70.90 241.18 16.00 0 1 Fracture 71.14 22.16 21.68 9.76 4 Fracture 71.54 46.97 12.25 0 4 Bedding 72.02 109.13 30.99 0 3 Fracture 73.24 346.97 51.38 0 3 Fracture 73.24 346.97 51.38 0 3 Fracture 73.25 69.36 6.85 0 5 Bedding 74.27 56.42 6.56 0 5 Bedding 75.13 215.87 54.55 0 3 Fracture 76.92 58.62 28.84 0 5 Fracture 77.53 82.86 53.75 0 3 Fracture 78.29 328.15 15.51 0 4 Bedding 78.57 68.68 37.27 0 3 Fracture 78.59 48.20 51.91 7.96 0 5 Bedding 78.55 83.67 35.67 8.54 3 Fracture 78.57 68.68 37.27 0 3 Fracture 78.59 48.20 51.90 0 3 Fracture 78.59 48.20 51.90 0 3 Fracture 78.57 68.68 37.27 0 3 Fracture 88.59 48.20 51.90 0 3 Fracture 88.57 68.68 37.27 0 3 Fracture 88.59 11.16 46.50 0 3 Fracture 88.50 11.16 46.50 0 3 Fracture 88.70 11.17 0 5 Bedding 88.43 219.00 10.28 0 1 Bedding 88.446 8.22 38.87 0 3 Fracture 88.50 131.53 25.35 0 5 Fracture 88.57 284.49 75.19 0 2 Fracture 88.59 191.64 56.06 0 3 Fracture 88.69 191.64 56.06 0 3 Fracture				_	
67.53 320.83 21.76 0 5 Fracture 68.01 40.52 67.72 0 2 Fracture 68.09 29.07 64.04 0 2 Fracture 68.28 70.03 55.38 0 3 Fracture 68.28 70.03 55.38 0 3 Fracture 69.20 357.37 29.62 0 3 Fracture 69.20 357.37 29.62 0 3 Fracture 69.35 168.67 37.16 0 3 Fracture 69.83 138.30 20.68 0 5 Fracture 69.89 138.30 20.68 0 5 Fracture 70.36 70.98 63.63 0 2 Fracture 70.60 50.97 64.07 0 2 Fracture 70.61 64.06 48.91 0 3 Fracture 71.54 46.97 12.25 0 4 Bedding 72.02 109.13 30.99 0 3 Fracture 73.24 346.97 51.38 0 3 Fracture 73.25 69.36 6.85 0 5 Bedding 74.27 56.42 6.56 0 5 Bedding 75.13 215.87 54.55 0 3 Fracture 75.57 99.41 7.96 0 5 Bedding 76.28 311.46 40.30 27.18 3 Fracture 77.53 82.86 53.75 0 3 Fracture 78.59 48.29 328.15 15.51 0 4 Bedding 78.55 83.67 35.67 8.54 3 Fracture 78.57 68.68 37.27 0 3 Fracture 82.52 1.63 15.28 0 4 Bedding 84.39 219.00 10.28 0 1 Bedding 84.46 8.22 38.87 0 3 Fracture 85.23 146.53 11.17 0 5 Bedding 85.25 131.53 25.35 0 2 Fracture 86.89 191.64 56.06 0 3 Fracture 86.89 191.64 56.06 0 3 Fracture 86.89 191.64 56.06 0 3 Fracture 87.69 2 191.64 56.06 0 3 Fracture 87.60 83.55 35.89 0 3 Fracture					
68.01					
68.09 29.07 64.04 0 2 Fracture 68.28 70.03 55.38 0 3 Fracture 68.37 94.62 51.58 0 3 Fracture 69.01 303.97 22.88 0 5 Fracture 69.02 357.37 29.62 0 3 Fracture 69.35 168.67 37.16 0 3 Fracture 69.71 282.81 22.59 0 5 Fracture 69.89 138.30 20.68 0 5 Fracture 70.36 70.98 63.63 0 2 Fracture 70.36 70.98 63.63 0 3 Fracture 70.60 50.97 64.07 0 70 Fracture 70.90 241.18 16.00 0 1 Fracture 71.14 22.16 21.68 9.76 4 Fracture 71.54 46.97 12.25 0 4 Bedding 72.02 109.13 30.99 0 3 Fracture 73.24 346.97 51.38 0 3 Fracture 73.24 346.97 51.38 0 3 Fracture 75.13 215.87 54.55 0 5 Bedding 74.27 56.42 6.56 0 5 Bedding 74.27 56.42 6.56 0 5 Bedding 75.13 215.87 54.55 0 3 Fracture 75.59 9.41 7.96 0 5 Bedding 76.28 311.46 40.30 27.18 3 Fracture 77.53 82.86 53.75 0 3 Fracture 78.55 83.67 35.67 8.54 3 Fracture 78.57 68.68 37.27 0 3 Fracture 78.57 68.68 37.27 0 3 Fracture 78.57 68.68 37.27 0 3 Fracture 82.52 1.63 15.28 0 4 Bedding 84.39 219.00 10.28 0 4 Bedding 84.46 8.22 38.87 0 3 Fracture 85.23 146.53 11.17 0 5 Bedding 85.25 131.53 25.35 0 5 Fracture 85.77 284.49 75.19 0 2 Fracture 85.23 146.53 11.17 0 5 Bedding 85.25 131.53 25.35 0 5 Fracture 86.89 191.64 56.06 0 3 Fracture 86.89 191.64 56.06 0 3 Fracture 87.06 83.55 35.89 0 3 Fracture				_	
68.28 70.03 55.38 0 3 Fracture 68.37 94.62 51.58 0 3 Fracture 69.01 303.97 22.88 0 5 Fracture 69.20 357.37 29.62 0 3 Fracture 69.35 168.67 37.16 0 3 Fracture 69.89 138.30 20.68 0 5 Fracture 70.36 70.98 63.63 0 2 Fracture 70.60 50.97 64.07 0 2 Fracture 70.61 64.06 48.91 0 3 Fracture 70.90 241.18 16.00 0 1 Fracture 71.54 46.97 12.25 0 4 Bedding 71.78 25.12 16.84 0 4 Bedding 72.02 109.13 30.99 0 3 Fracture 73.85 69.36 6.85 0 5 Bedding 74.27 56.42 6.56 0 5 Bedding <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
68.37 94.62 51.58 0 3 Fracture 69.01 303.97 22.88 0 5 Fracture 69.20 357.37 29.62 0 3 Fracture 69.35 168.67 37.16 0 3 Fracture 69.35 168.67 37.16 0 3 Fracture 69.71 282.81 22.59 0 5 Fracture 69.89 138.30 20.68 0 5 Fracture 70.36 70.98 63.63 0 2 Fracture 70.60 50.97 64.07 0 2 Fracture 70.61 64.06 48.91 0 3 Fracture 70.90 241.18 16.00 0 1 Fracture 71.14 22.16 21.68 9.76 4 Fracture 71.54 46.97 12.25 0 4 Bedding 71.78 25.12 16.84 0 4 Bedding 72.02 109.13 30.99 0 3 Fracture 73.24 346.97 51.38 0 3 Fracture 73.24 346.97 51.38 0 3 Fracture 75.13 215.87 54.55 0 5 Bedding 74.27 56.42 6.56 0 5 Bedding 75.13 215.87 54.55 0 3 Fracture 75.49 0.88 32.65 0 3 Fracture 75.57 99.41 7.96 0 5 Bedding 76.28 311.46 40.30 27.18 3 Fracture 77.53 82.86 53.75 0 3 Fracture 77.53 82.86 53.75 0 3 Fracture 78.29 328.15 15.51 0 4 Bedding 78.55 83.67 35.67 8.54 3 Fracture 78.29 328.15 15.51 0 4 Bedding 78.55 83.67 35.67 8.54 3 Fracture 80.94 48.20 51.90 0 3 Fracture 82.52 1.63 15.28 0 4 Bedding 84.46 8.22 38.87 0 3 Fracture 84.56 311.16 46.50 0 3 Fracture 84.70 114.79 76.95 0 2 Fracture 85.23 146.53 11.17 0 5 Bedding 85.25 131.53 25.35 0 5 Fracture 85.77 284.49 75.19 0 2 Fracture 86.88 77.67 66.37 0 2 Fracture 86.88 77.67 66.37 0 2 Fracture 86.92 191.64 56.06 0 3 Fracture					
69.01 303.97 22.88 0 5 Fracture 69.20 357.37 29.62 0 3 Fracture 69.35 168.67 37.16 0 3 Fracture 69.71 282.81 22.59 0 5 Fracture 69.89 138.30 20.68 0 5 Fracture 70.36 70.98 63.63 0 2 Fracture 70.60 50.97 64.07 0 2 Fracture 70.61 64.06 48.91 0 3 Fracture 70.90 241.18 16.00 0 1 Fracture 71.14 22.16 21.68 9.76 4 Fracture 71.54 46.97 12.25 0 4 Bedding 71.78 25.12 16.84 0 4 Bedding 72.02 109.13 30.99 0 3 Fracture 73.24 346.97 51.38 0 3 Fracture 73.85 69.36 6.85 0 5 Bedding 74.27 56.42 6.56 0 5 Bedding 74.27 56.42 6.56 0 5 Bedding 75.13 215.87 54.55 0 3 Fracture 75.57 99.41 7.96 0 5 Bedding 76.28 311.46 40.30 27.18 3 Fracture 77.53 82.86 53.75 0 3 Fracture 77.53 82.86 53.75 0 3 Fracture 78.29 328.15 15.51 0 4 Bedding 78.55 83.67 35.67 8.54 3 Fracture 78.57 68.68 37.27 0 3 Fracture 80.94 48.20 51.90 0 3 Fracture 82.52 1.63 15.28 0 4 Bedding 84.46 8.22 38.87 0 3 Fracture 84.56 311.16 46.50 0 3 Fracture 84.56 311.16 46.50 0 3 Fracture 85.23 146.53 11.17 0 5 Bedding 85.25 131.53 2.5.35 0 5 Fracture 85.72 291.83 75.01 0 Fracture 85.72 291.83 75.01 0 2 Fracture 86.88 77.67 66.37 0 2 Fracture 86.88 77.67 66.37 0 2 Fracture 86.92 191.64 56.06 0 3 Fracture 87.06 83.55 35.89 0 3 Fracture				_	
69.20 357.37 29.62 0 3 Fracture 69.35 168.67 37.16 0 3 Fracture 69.71 282.81 22.59 0 5 Fracture 69.89 138.30 20.68 0 5 Fracture 70.36 70.98 63.63 0 2 Fracture 70.60 50.97 64.07 0 2 Fracture 70.61 64.06 48.91 0 3 Fracture 70.90 241.18 16.00 0 1 Fracture 71.14 22.16 21.68 9.76 4 Fracture 71.54 46.97 12.25 0 4 Bedding 72.02 109.13 30.99 0 3 Fracture 73.24 346.97 51.38 0 3 Fracture 73.85 69.36 6.85 0 5 Bedding 74.27 56.42 6.56 0 5 Bedding 75.13 215.87 54.55 0 3 Fracture 75.57 99.41 7.96 0 5 Bedding 76.28 311.46 40.30 27.18 3 Fracture 77.53 82.86 53.75 0 3 Fracture 77.53 82.86 53.75 0 3 Fracture 78.29 328.15 15.51 0 4 Bedding 78.55 83.67 35.67 8.54 3 Fracture 78.57 68.68 37.27 0 3 Fracture 82.52 1.63 15.28 0 4 Bedding 84.46 8.22 38.87 0 3 Fracture 84.56 311.16 46.50 0 3 Fracture 84.70 114.79 76.95 0 4 Bedding 85.25 131.53 25.35 0 5 Fracture 85.27 291.83 75.01 0 2 Fracture 85.27 291.83 75.01 0 5 Bedding 85.25 131.53 25.35 0 5 Fracture 86.88 77.67 66.37 0 2 Fracture 86.88 77.67 66.37 0 2 Fracture 86.88 77.67 66.37 0 2 Fracture 86.92 191.64 56.06 0 3 Fracture 87.06 83.55 35.89 0 3 Fracture					
69.35 168.67 37.16 0 3 Fracture 69.71 282.81 22.59 0 5 Fracture 69.89 138.30 20.68 0 5 Fracture 70.36 70.98 63.63 0 2 Fracture 70.60 50.97 64.07 0 2 Fracture 70.61 64.06 48.91 0 3 Fracture 70.90 241.18 16.00 0 1 Fracture 71.14 22.16 21.68 9.76 4 Fracture 71.54 46.97 12.25 0 4 Bedding 72.02 109.13 30.99 0 3 Fracture 73.24 346.97 51.38 0 3 Fracture 73.85 69.36 6.85 0 5 Bedding 74.27 56.42 6.56 0 5 Bedding 75.13 215.87 54.55 0 3 Fracture 75.57 99.41 7.96 0 5 Bedding 76.28 311.46 40.30 27.18 3 Fracture 77.53 82.86 53.75 0 3 Fracture 78.29 328.15 15.51 0 4 Bedding 78.55 68.68 37.27 0 3 Fracture 78.57 68.68 37.27 0 3 Fracture 78.59 48.20 51.90 0 3 Fracture 82.52 1.63 15.28 0 4 Bedding 84.46 8.22 38.87 0 3 Fracture 84.56 311.16 46.50 0 3 Fracture 85.23 146.53 11.17 0 5 Bedding 84.46 8.22 38.87 0 3 Fracture 85.23 146.53 11.17 0 5 Bedding 85.25 131.53 25.35 0 5 Fracture 85.27 284.49 75.19 0 2 Fracture 85.77 284.49 75.19 0 2 Fracture 85.77 284.49 75.19 0 2 Fracture 85.77 284.49 75.19 0 2 Fracture 86.88 77.67 66.37 0 2 Fracture 86.92 191.64 56.06 0 3 Fracture 87.06 83.55 35.89 0 3 Fracture					
69.71 282.81 22.59 0 5 Fracture 69.89 138.30 20.68 0 5 Fracture 70.36 70.98 63.63 0 2 Fracture 70.60 50.97 64.07 0 2 Fracture 70.61 64.06 48.91 0 3 Fracture 70.90 241.18 16.00 0 1 Fracture 71.14 22.16 21.68 9.76 4 Fracture 71.54 46.97 12.25 0 4 Bedding 71.78 25.12 16.84 0 4 Bedding 72.02 109.13 30.99 0 3 Fracture 73.85 69.36 6.85 0 5 Bedding 74.27 56.42 6.56 0 5 Bedding 75.13 215.87 54.55 0 3 Fracture 75.57 99.41 7.96 0 5 Bedding 76.28 311.46 40.30 27.18 3 Fracture					
69.89 138.30 20.68 0 5 Fracture 70.36 70.98 63.63 0 2 Fracture 70.60 50.97 64.07 0 2 Fracture 70.61 64.06 48.91 0 3 Fracture 70.90 241.18 16.00 0 1 Fracture 71.14 22.16 21.68 9.76 4 Fracture 71.54 46.97 12.25 0 4 Bedding 71.78 25.12 16.84 0 4 Bedding 72.02 109.13 30.99 0 3 Fracture 73.24 346.97 51.38 0 3 Fracture 73.85 69.36 6.85 0 5 Bedding 74.27 56.42 6.56 0 5 Bedding 75.13 215.87 54.55 0 3 Fracture 75.57 99.41 7.96 0 5 Bedding 76.28 311.46 40.30 27.18 3 Fracture					
70.36 70.98 63.63 0 2 Fracture 70.60 50.97 64.07 0 2 Fracture 70.61 64.06 48.91 0 3 Fracture 70.90 241.18 16.00 0 1 Fracture 71.14 22.16 21.68 9.76 4 Fracture 71.54 46.97 12.25 0 4 Bedding 71.78 25.12 16.84 0 4 Bedding 72.02 109.13 30.99 0 3 Fracture 73.24 346.97 51.38 0 3 Fracture 73.85 69.36 6.85 0 5 Bedding 74.27 56.42 6.56 0 5 Bedding 75.13 215.87 54.55 0 3 Fracture 75.57 99.41 7.96 0 5 Bedding 76.28 311.46 40.30 27.18 3 Fracture 76.92 58.62 28.84 0 5 Fracture					
70.60 50.97 64.07 0 2 Fracture 70.61 64.06 48.91 0 3 Fracture 70.90 241.18 16.00 0 1 Fracture 71.14 22.16 21.68 9.76 4 Fracture 71.54 46.97 12.25 0 4 Bedding 71.78 25.12 16.84 0 4 Bedding 72.02 109.13 30.99 0 3 Fracture 73.24 346.97 51.38 0 3 Fracture 73.85 69.36 6.85 0 5 Bedding 74.27 56.42 6.56 0 5 Bedding 75.13 215.87 54.55 0 3 Fracture 75.549 0.88 32.65 0 3 Fracture 75.57 99.41 7.96 0 5 Bedding 76.28 311.46 40.30 27.18 3 Fracture 77.53 82.86 53.75 0 3 Fracture					
70.61 64.06 48.91 0 3 Fracture 70.90 241.18 16.00 0 1 Fracture 71.14 22.16 21.68 9.76 4 Fracture 71.54 46.97 12.25 0 4 Bedding 71.78 25.12 16.84 0 4 Bedding 72.02 109.13 30.99 0 3 Fracture 73.24 346.97 51.38 0 3 Fracture 73.85 69.36 6.85 0 5 Bedding 74.27 56.42 6.56 0 5 Bedding 75.13 215.87 54.55 0 3 Fracture 75.49 0.88 32.65 0 3 Fracture 75.57 99.41 7.96 0 5 Bedding 76.28 311.46 40.30 27.18 3 Fracture 77.53 82.86 53.75 0 3 Fracture 78.59 328.15 15.51 0 4 Bedding				_	
70.90 241.18 16.00 0 1 Fracture 71.14 22.16 21.68 9.76 4 Fracture 71.54 46.97 12.25 0 4 Bedding 71.78 25.12 16.84 0 4 Bedding 72.02 109.13 30.99 0 3 Fracture 73.24 346.97 51.38 0 3 Fracture 73.85 69.36 6.85 0 5 Bedding 74.27 56.42 6.56 0 5 Bedding 75.13 215.87 54.55 0 3 Fracture 75.49 0.88 32.65 0 3 Fracture 75.57 99.41 7.96 0 5 Bedding 76.28 311.46 40.30 27.18 3 Fracture 76.92 58.62 28.84 0 5 Fracture 77.53 82.86 53.75 0 3 Fracture 78.57 68.68 37.27 0 3 Fracture					
71.14 22.16 21.68 9.76 4 Fracture 71.54 46.97 12.25 0 4 Bedding 71.78 25.12 16.84 0 4 Bedding 72.02 109.13 30.99 0 3 Fracture 73.24 346.97 51.38 0 3 Fracture 73.85 69.36 6.85 0 5 Bedding 74.27 56.42 6.56 0 5 Bedding 75.13 215.87 54.55 0 3 Fracture 75.49 0.88 32.65 0 3 Fracture 75.57 99.41 7.96 0 5 Bedding 76.28 311.46 40.30 27.18 3 Fracture 76.92 58.62 28.84 0 5 Fracture 77.53 82.86 53.75 0 3 Fracture 78.59 328.15 15.51 0 4 Bedding 78.57 68.68 37.27 0 3 Fracture 80.94 48.20 51.90 0 3 Fracture 84.39				_	
71.54 46.97 12.25 0 4 Bedding 71.78 25.12 16.84 0 4 Bedding 72.02 109.13 30.99 0 3 Fracture 73.24 346.97 51.38 0 3 Fracture 73.85 69.36 6.85 0 5 Bedding 74.27 56.42 6.56 0 5 Bedding 75.13 215.87 54.55 0 3 Fracture 75.49 0.88 32.65 0 3 Fracture 75.57 99.41 7.96 0 5 Bedding 76.28 311.46 40.30 27.18 3 Fracture 76.92 58.62 28.84 0 5 Fracture 77.53 82.86 53.75 0 3 Fracture 78.29 328.15 15.51 0 4 Bedding 78.57 68.68 37.27 0 3 Fracture 80.94 48.20 51.90 0 3 Fracture 84.39 219.00 10.28 0 1 Bedding 84.46				_	
71.78 25.12 16.84 0 4 Bedding 72.02 109.13 30.99 0 3 Fracture 73.24 346.97 51.38 0 3 Fracture 73.85 69.36 6.85 0 5 Bedding 74.27 56.42 6.56 0 5 Bedding 75.13 215.87 54.55 0 3 Fracture 75.49 0.88 32.65 0 3 Fracture 75.57 99.41 7.96 0 5 Bedding 76.28 311.46 40.30 27.18 3 Fracture 76.92 58.62 28.84 0 5 Fracture 77.53 82.86 53.75 0 3 Fracture 78.29 328.15 15.51 0 4 Bedding 78.57 68.68 37.27 0 3 Fracture 80.94 48.20 51.90 0 3 Fracture 82.52 1.63 15.28 0 4 Bedding 84.46 8.22 38.87 0 3 Fracture 84.70 <					
72.02 109.13 30.99 0 3 Fracture 73.24 346.97 51.38 0 3 Fracture 73.85 69.36 6.85 0 5 Bedding 74.27 56.42 6.56 0 5 Bedding 75.13 215.87 54.55 0 3 Fracture 75.49 0.88 32.65 0 3 Fracture 75.57 99.41 7.96 0 5 Bedding 76.28 311.46 40.30 27.18 3 Fracture 76.92 58.62 28.84 0 5 Fracture 77.53 82.86 53.75 0 3 Fracture 78.29 328.15 15.51 0 4 Bedding 78.55 83.67 35.67 8.54 3 Fracture 80.94 48.20 51.90 0 3 Fracture 80.94 48.20 51.90 0 3 Fracture 84.39 219.00 10.28 0 1 Bedding 84.46 8.22 38.87 0 3 Fracture 84.56				_	-
73.24 346.97 51.38 0 3 Fracture 73.85 69.36 6.85 0 5 Bedding 74.27 56.42 6.56 0 5 Bedding 75.13 215.87 54.55 0 3 Fracture 75.49 0.88 32.65 0 3 Fracture 75.57 99.41 7.96 0 5 Bedding 76.28 311.46 40.30 27.18 3 Fracture 76.92 58.62 28.84 0 5 Fracture 77.53 82.86 53.75 0 3 Fracture 78.29 328.15 15.51 0 4 Bedding 78.55 83.67 35.67 8.54 3 Fracture 80.94 48.20 51.90 0 3 Fracture 80.94 48.20 51.90 0 3 Fracture 84.39 219.00 10.28 0 1 Bedding 84.46 8.22 38.87 0 3 Fracture 84.56 311.16 46.50 0 3 Fracture 85.23					=
73.85 69.36 6.85 0 5 Bedding 74.27 56.42 6.56 0 5 Bedding 75.13 215.87 54.55 0 3 Fracture 75.49 0.88 32.65 0 3 Fracture 75.57 99.41 7.96 0 5 Bedding 76.28 311.46 40.30 27.18 3 Fracture 76.92 58.62 28.84 0 5 Fracture 77.53 82.86 53.75 0 3 Fracture 78.29 328.15 15.51 0 4 Bedding 78.55 83.67 35.67 8.54 3 Fracture 78.57 68.68 37.27 0 3 Fracture 80.94 48.20 51.90 0 3 Fracture 82.52 1.63 15.28 0 4 Bedding 84.39 219.00 10.28 0 1 Bedding 84.46 8.22 38.87 0 3 Fracture 84.70 114.79 76.95 0 2 Fracture 85.72					
74.27 56.42 6.56 0 5 Bedding 75.13 215.87 54.55 0 3 Fracture 75.49 0.88 32.65 0 3 Fracture 75.57 99.41 7.96 0 5 Bedding 76.28 311.46 40.30 27.18 3 Fracture 76.92 58.62 28.84 0 5 Fracture 77.53 82.86 53.75 0 3 Fracture 78.29 328.15 15.51 0 4 Bedding 78.55 83.67 35.67 8.54 3 Fracture 78.57 68.68 37.27 0 3 Fracture 80.94 48.20 51.90 0 3 Fracture 82.52 1.63 15.28 0 4 Bedding 84.39 219.00 10.28 0 1 Bedding 84.46 8.22 38.87 0 3 Fracture 84.56 311.16 46.50 0 3 Fracture 85.23 146.53 11.17 0 5 Bedding 85.72					
75.13 215.87 54.55 0 3 Fracture 75.49 0.88 32.65 0 5 Bedding 76.28 311.46 40.30 27.18 3 Fracture 76.92 58.62 28.84 0 5 Fracture 77.53 82.86 53.75 0 3 Fracture 78.29 328.15 15.51 0 4 Bedding 78.55 83.67 35.67 8.54 3 Fracture 78.57 68.68 37.27 0 3 Fracture 80.94 48.20 51.90 0 3 Fracture 82.52 1.63 15.28 0 4 Bedding 84.39 219.00 10.28 0 1 Bedding 84.46 8.22 38.87 0 3 Fracture 84.56 311.16 46.50 0 3 Fracture 84.70 114.79 76.95 0 2 Fracture 85.23 146.53 11.17 0 5 Bedding 85.25 131.53 25.35 0 5 Fracture 85.77 284.49 75.19 0 2 Fracture 86.88 77.67 66.37 0 2 Fracture 86.92 191.64 56.06 0 3 Fracture 87.06 83.55 35.89 0 3 Fracture				_	•
75.49 0.88 32.65 0 3 Fracture 75.57 99.41 7.96 0 5 Bedding 76.28 311.46 40.30 27.18 3 Fracture 76.92 58.62 28.84 0 5 Fracture 77.53 82.86 53.75 0 3 Fracture 78.29 328.15 15.51 0 4 Bedding 78.55 83.67 35.67 8.54 3 Fracture 78.57 68.68 37.27 0 3 Fracture 80.94 48.20 51.90 0 3 Fracture 82.52 1.63 15.28 0 4 Bedding 84.39 219.00 10.28 0 1 Bedding 84.46 8.22 38.87 0 3 Fracture 84.70 114.79 76.95 0 2 Fracture 85.23 146.53 11.17 0 5 Bedding 85.72 291.83 75.01 0 2 Fracture 85.77 284.49 75.19 0 2 Fracture 86.88				_	•
75.57 99.41 7.96 0 5 Bedding 76.28 311.46 40.30 27.18 3 Fracture 76.92 58.62 28.84 0 5 Fracture 77.53 82.86 53.75 0 3 Fracture 78.29 328.15 15.51 0 4 Bedding 78.55 83.67 35.67 8.54 3 Fracture 78.57 68.68 37.27 0 3 Fracture 80.94 48.20 51.90 0 3 Fracture 82.52 1.63 15.28 0 4 Bedding 84.39 219.00 10.28 0 1 Bedding 84.46 8.22 38.87 0 3 Fracture 84.70 114.79 76.95 0 2 Fracture 85.23 146.53 11.17 0 5 Bedding 85.72 291.83 75.01 0 2 Fracture 85.77 284.49 75.19 0 2 Fracture 86.88 77.67 66.37 0 2 Fracture 86.92 <td></td> <td></td> <td></td> <td></td> <td></td>					
76.28 311.46 40.30 27.18 3 Fracture 76.92 58.62 28.84 0 5 Fracture 77.53 82.86 53.75 0 3 Fracture 78.29 328.15 15.51 0 4 Bedding 78.55 83.67 35.67 8.54 3 Fracture 78.57 68.68 37.27 0 3 Fracture 80.94 48.20 51.90 0 3 Fracture 82.52 1.63 15.28 0 4 Bedding 84.39 219.00 10.28 0 1 Bedding 84.46 8.22 38.87 0 3 Fracture 84.56 311.16 46.50 0 3 Fracture 84.70 114.79 76.95 0 2 Fracture 85.23 146.53 11.17 0 5 Bedding 85.72 291.83 75.01 0 2 Fracture 85.77 284.49 75.19 0 2 Fracture 86.88 77.67 66.37 0 2 Fracture 86.92<				_	
76.92 58.62 28.84 0 5 Fracture 77.53 82.86 53.75 0 3 Fracture 78.29 328.15 15.51 0 4 Bedding 78.55 83.67 35.67 8.54 3 Fracture 78.57 68.68 37.27 0 3 Fracture 80.94 48.20 51.90 0 3 Fracture 82.52 1.63 15.28 0 4 Bedding 84.39 219.00 10.28 0 1 Bedding 84.46 8.22 38.87 0 3 Fracture 84.56 311.16 46.50 0 3 Fracture 84.70 114.79 76.95 0 2 Fracture 85.23 146.53 11.17 0 5 Bedding 85.72 291.83 75.01 0 2 Fracture 85.77 284.49 75.19 0 2 Fracture 86.88 77.67 66.37 0 2 Fracture 86.92 191.64 56.06 0 3 Fracture 87.06					•
77.53 82.86 53.75 0 3 Fracture 78.29 328.15 15.51 0 4 Bedding 78.55 83.67 35.67 8.54 3 Fracture 78.57 68.68 37.27 0 3 Fracture 80.94 48.20 51.90 0 3 Fracture 82.52 1.63 15.28 0 4 Bedding 84.39 219.00 10.28 0 1 Bedding 84.46 8.22 38.87 0 3 Fracture 84.56 311.16 46.50 0 3 Fracture 84.70 114.79 76.95 0 2 Fracture 85.23 146.53 11.17 0 5 Bedding 85.72 291.83 75.01 0 2 Fracture 85.77 284.49 75.19 0 2 Fracture 86.88 77.67 66.37 0 2 Fracture 86.92 191.64 56.06 0 3 Fracture 87.06 83.55 35.89 0 3 Fracture					
78.29 328.15 15.51 0 4 Bedding 78.55 83.67 35.67 8.54 3 Fracture 78.57 68.68 37.27 0 3 Fracture 80.94 48.20 51.90 0 3 Fracture 82.52 1.63 15.28 0 4 Bedding 84.39 219.00 10.28 0 1 Bedding 84.46 8.22 38.87 0 3 Fracture 84.56 311.16 46.50 0 3 Fracture 84.70 114.79 76.95 0 2 Fracture 85.23 146.53 11.17 0 5 Bedding 85.25 131.53 25.35 0 5 Fracture 85.72 291.83 75.01 0 2 Fracture 85.77 284.49 75.19 0 2 Fracture 86.88 77.67 66.37 0 2 Fracture 86.92 191.64 56.06 0 3 Fracture 87.06 83.55 35.89 0 3 Fracture				_	
78.55 83.67 35.67 8.54 3 Fracture 78.57 68.68 37.27 0 3 Fracture 80.94 48.20 51.90 0 3 Fracture 82.52 1.63 15.28 0 4 Bedding 84.39 219.00 10.28 0 1 Bedding 84.46 8.22 38.87 0 3 Fracture 84.56 311.16 46.50 0 3 Fracture 84.70 114.79 76.95 0 2 Fracture 85.23 146.53 11.17 0 5 Bedding 85.25 131.53 25.35 0 5 Fracture 85.72 291.83 75.01 0 2 Fracture 85.88 77.67 66.37 0 2 Fracture 86.92 191.64 56.06 0 3 Fracture 87.06 83.55 35.89 0 3 Fracture					
78.57 68.68 37.27 0 3 Fracture 80.94 48.20 51.90 0 3 Fracture 82.52 1.63 15.28 0 4 Bedding 84.39 219.00 10.28 0 1 Bedding 84.46 8.22 38.87 0 3 Fracture 84.56 311.16 46.50 0 3 Fracture 84.70 114.79 76.95 0 2 Fracture 85.23 146.53 11.17 0 5 Bedding 85.25 131.53 25.35 0 5 Fracture 85.72 291.83 75.01 0 2 Fracture 85.77 284.49 75.19 0 2 Fracture 86.88 77.67 66.37 0 2 Fracture 86.92 191.64 56.06 0 3 Fracture 87.06 83.55 35.89 0 3 Fracture					•
80.94 48.20 51.90 0 3 Fracture 82.52 1.63 15.28 0 4 Bedding 84.39 219.00 10.28 0 1 Bedding 84.46 8.22 38.87 0 3 Fracture 84.56 311.16 46.50 0 3 Fracture 84.70 114.79 76.95 0 2 Fracture 85.23 146.53 11.17 0 5 Bedding 85.25 131.53 25.35 0 5 Fracture 85.72 291.83 75.01 0 2 Fracture 85.77 284.49 75.19 0 2 Fracture 86.88 77.67 66.37 0 2 Fracture 86.92 191.64 56.06 0 3 Fracture 87.06 83.55 35.89 0 3 Fracture					
82.52 1.63 15.28 0 4 Bedding 84.39 219.00 10.28 0 1 Bedding 84.46 8.22 38.87 0 3 Fracture 84.56 311.16 46.50 0 3 Fracture 84.70 114.79 76.95 0 2 Fracture 85.23 146.53 11.17 0 5 Bedding 85.25 131.53 25.35 0 5 Fracture 85.72 291.83 75.01 0 2 Fracture 85.77 284.49 75.19 0 2 Fracture 86.88 77.67 66.37 0 2 Fracture 86.92 191.64 56.06 0 3 Fracture 87.06 83.55 35.89 0 3 Fracture				_	
84.39 219.00 10.28 0 1 Bedding 84.46 8.22 38.87 0 3 Fracture 84.56 311.16 46.50 0 3 Fracture 84.70 114.79 76.95 0 2 Fracture 85.23 146.53 11.17 0 5 Bedding 85.25 131.53 25.35 0 5 Fracture 85.72 291.83 75.01 0 2 Fracture 85.77 284.49 75.19 0 2 Fracture 86.88 77.67 66.37 0 2 Fracture 86.92 191.64 56.06 0 3 Fracture 87.06 83.55 35.89 0 3 Fracture					
84.46 8.22 38.87 0 3 Fracture 84.56 311.16 46.50 0 3 Fracture 84.70 114.79 76.95 0 2 Fracture 85.23 146.53 11.17 0 5 Bedding 85.25 131.53 25.35 0 5 Fracture 85.72 291.83 75.01 0 2 Fracture 85.77 284.49 75.19 0 2 Fracture 86.88 77.67 66.37 0 2 Fracture 86.92 191.64 56.06 0 3 Fracture 87.06 83.55 35.89 0 3 Fracture					•
84.56 311.16 46.50 0 3 Fracture 84.70 114.79 76.95 0 2 Fracture 85.23 146.53 11.17 0 5 Bedding 85.25 131.53 25.35 0 5 Fracture 85.72 291.83 75.01 0 2 Fracture 85.77 284.49 75.19 0 2 Fracture 86.88 77.67 66.37 0 2 Fracture 86.92 191.64 56.06 0 3 Fracture 87.06 83.55 35.89 0 3 Fracture					-
84.70 114.79 76.95 0 2 Fracture 85.23 146.53 11.17 0 5 Bedding 85.25 131.53 25.35 0 5 Fracture 85.72 291.83 75.01 0 2 Fracture 85.77 284.49 75.19 0 2 Fracture 86.88 77.67 66.37 0 2 Fracture 86.92 191.64 56.06 0 3 Fracture 87.06 83.55 35.89 0 3 Fracture				0	
85.23 146.53 11.17 0 5 Bedding 85.25 131.53 25.35 0 5 Fracture 85.72 291.83 75.01 0 2 Fracture 85.77 284.49 75.19 0 2 Fracture 86.88 77.67 66.37 0 2 Fracture 86.92 191.64 56.06 0 3 Fracture 87.06 83.55 35.89 0 3 Fracture				0	3 Fracture
85.25 131.53 25.35 0 5 Fracture 85.72 291.83 75.01 0 2 Fracture 85.77 284.49 75.19 0 2 Fracture 86.88 77.67 66.37 0 2 Fracture 86.92 191.64 56.06 0 3 Fracture 87.06 83.55 35.89 0 3 Fracture	84.70	114.79	76.95	0	
85.72 291.83 75.01 0 2 Fracture 85.77 284.49 75.19 0 2 Fracture 86.88 77.67 66.37 0 2 Fracture 86.92 191.64 56.06 0 3 Fracture 87.06 83.55 35.89 0 3 Fracture				0	=
85.77 284.49 75.19 0 2 Fracture 86.88 77.67 66.37 0 2 Fracture 86.92 191.64 56.06 0 3 Fracture 87.06 83.55 35.89 0 3 Fracture			25.35	0	
86.88 77.67 66.37 0 2 Fracture 86.92 191.64 56.06 0 3 Fracture 87.06 83.55 35.89 0 3 Fracture		291.83		0	
86.92 191.64 56.06 0 3 Fracture 87.06 83.55 35.89 0 3 Fracture	85.77	284.49		0	2 Fracture
87.06 83.55 35.89 0 3 Fracture	86.88	77.67	66.37	0	2 Fracture
	86.92	191.64	56.06	0	3 Fracture
87.10 92.81 38.08 0 3 Intrusion	87.06	83.55	35.89	0	3 Fracture
	87.10	92.81	38.08	0	3 Intrusion

Depth	Azimuth	Dip	Aperture Type	Group Interp
m	deg	deg	mm	
87.75	9.26	55.30	0	3 Fracture
87.82	11.77	47.82	0	3 Fracture
89.25	346.00	47.77	0	3 Fracture

APPENDIX

F

DESCRIPTION OF HOEK-BROWN PARAMETERS

HOEK-BROWN FAILURE CRITERION – 2002 EDITION

Evert Hoek

Consulting Engineer, Vancouver, Canada

Carlos Carranza-Torres

Itasca Consulting Group Inc., Minneapolis, USA

Brent Corkum

Rocscience Inc., Toronto, Canada

ABSTRACT: The Hoek-Brown failure criterion for rock masses is widely accepted and has been applied in a large number of projects around the world. While, in general, it has been found to be satisfactory, there are some uncertainties and inaccuracies that have made the criterion inconvenient to apply and to incorporate into numerical models and limit equilibrium programs. In particular, the difficulty of finding an acceptable equivalent friction angle and cohesive strength for a given rock mass has been a problem since the publication of the criterion in 1980. This paper resolves all these issues and sets out a recommended sequence of calculations for applying the criterion. An associated Windows program called "RocLab" has been developed to provide a convenient means of solving and plotting the equations presented in this paper.

1. INTRODUCTION

Hoek and Brown [1, 2] introduced their failure criterion in an attempt to provide input data for the analyses required for the design of underground excavations in hard rock. The criterion was derived from the results of research into the brittle failure of intact rock by Hoek [3] and on model studies of jointed rock mass behaviour by Brown [4]. The criterion started from the properties of intact rock and then introduced factors to reduce these properties on the basis of the characteristics of joints in a rock mass. The authors sought to link the empirical criterion to geological observations by means of one of the available rock mass classification schemes and, for this purpose, they chose the Rock Mass Rating proposed by Bieniawski [5].

Because of the lack of suitable alternatives, the criterion was soon adopted by the rock mechanics community and its use quickly spread beyond the original limits used in deriving the strength reduction relationships. Consequently, it became necessary to re-examine these relationships and to introduce new elements from time to time to account for the wide range of practical problems to which the criterion was being applied. Typical of these enhancements were the introduction of the idea of "undisturbed" and "disturbed" rock masses Hoek and Brown [6], and the introduction of a modified criterion to force the rock mass tensile

strength to zero for very poor quality rock masses (Hoek, Wood and Shah, [7]).

One of the early difficulties arose because many geotechnical problems, particularly slope stability issues, are more conveniently dealt with in terms of shear and normal stresses rather than the principal stress relationships of the original Hoek-Brown criterion, defined by the equation:

$$\sigma_{1}' = \sigma_{3}' + \sigma_{ci} \left(m \frac{\sigma_{3}'}{\sigma_{ci}} + s \right)^{0.5} \tag{1}$$

where σ_1 and σ_3 are the major and minor effective principal stresses at failure

 σ_{ci} is the uniaxial compressive strength of the intact rock material and

m and s are material constants, where s = 1 for intact rock.

An exact relationship between equation 1 and the normal and shear stresses at failure was derived by J. W. Bray (reported by Hoek [8]) and later by Ucar [9] and Londe¹ [10].

Hoek [12] discussed the derivation of equivalent friction angles and cohesive strengths for various practical situations. These derivations were based

¹ Londe's equations were later found to contain errors although the concepts introduced by Londe were extremely important in the application of the Hoek-Brown criterion to tunnelling problems (Carranza-Torres and Fairhurst, [11])

upon tangents to the Mohr envelope derived by Bray. Hoek [13] suggested that the cohesive strength determined by fitting a tangent to the curvilinear Mohr envelope is an upper bound value and may give optimistic results in stability calculations. Consequently, an average value, determined by fitting a linear Mohr-Coulomb relationship by least squares methods, may be more appropriate. In this paper Hoek also introduced the concept of the Generalized Hoek-Brown criterion in which the shape of the principal stress plot or the Mohr envelope could be adjusted by means of a variable coefficient *a* in place of the square root term in equation 1.

Hoek and Brown [14] attempted to consolidate all the previous enhancements into a comprehensive presentation of the failure criterion and they gave a number of worked examples to illustrate its practical application.

In addition to the changes in the equations, it was also recognised that the Rock Mass Rating of Bieniawski was no longer adequate as a vehicle for relating the failure criterion to geological observations in the field, particularly for very weak rock masses. This resulted in the introduction of the Geological Strength Index (GSI) by Hoek, Wood and Shah [7], Hoek [13] and Hoek, Kaiser and Bawden [15]. This index was subsequently extended for weak rock masses in a series of papers by Hoek, Marinos and Benissi [16], Hoek and Marinos [17, 18] and Marinos and Hoek [19].

The Geological Strength Index will not be discussed in the following text, which will concentrate on the sequence of calculations now proposed for the application of the Generalized Hoek Brown criterion to jointed rock masses.

2. GENERALIZED HOEK-BROWN CRITERION

This is expressed as

$$\sigma_{1} = \sigma_{3} + \sigma_{ci} \left(m_{b} \frac{\sigma_{3}}{\sigma_{ci}} + s \right)^{a} \tag{2}$$

where m_b is a reduced value of the material constant m_i and is given by

$$m_b = m_i \exp\left(\frac{GSI - 100}{28 - 14D}\right) \tag{3}$$

s and a are constants for the rock mass given by the following relationships:

$$s = \exp\left(\frac{GSI - 100}{9 - 3D}\right) \tag{4}$$

$$a = \frac{1}{2} + \frac{1}{6} \left(e^{-GSI/15} - e^{-20/3} \right)$$
 (5)

D is a factor which depends upon the degree of disturbance to which the rock mass has been subjected by blast damage and stress relaxation. It varies from 0 for undisturbed in situ rock masses to 1 for very disturbed rock masses. Guidelines for the selection of D are discussed in a later section.

The uniaxial compressive strength is obtained by setting $\sigma'_3 = 0$ in equation 2, giving:

$$\sigma_c = \sigma_{ci}.s^a \tag{6}$$

and, the tensile strength is:

$$\sigma_t = -\frac{s\sigma_{ci}}{m_b} \tag{7}$$

Equation 7 is obtained by setting $\sigma_1 = \sigma_3 = \sigma_t$ in equation 2. This represents a condition of biaxial tension. Hock [8] showed that, for brittle materials, the uniaxial tensile strength is equal to the biaxial tensile strength.

Note that the "switch" at GSI = 25 for the coefficients s and a (Hoek and Brown, [14]) has been eliminated in equations 4 and 5 which give smooth continuous transitions for the entire range of GSI values. The numerical values of a and s, given by these equations, are very close to those given by the previous equations and it is not necessary for readers to revisit and make corrections to old calculations.

Normal and shear stresses are related to principal stresses by the equations published by Balmer [20].

$$\sigma'_{n} = \frac{\sigma'_{1} + \sigma'_{3}}{2} - \frac{\sigma'_{1} - \sigma'_{3}}{2} \cdot \frac{d\sigma'_{1}/d\sigma'_{3} - 1}{d\sigma'_{1}/d\sigma'_{3} + 1}$$
(8)

$$\tau = \left(\sigma_1' - \sigma_3'\right) \frac{\sqrt{d\sigma_1'/d\sigma_3'}}{d\sigma_1'/d\sigma_3' + 1} \tag{9}$$

where

$$d\sigma'_{1}/d\sigma'_{3} = 1 + am_{b}(m_{b}\sigma'_{3}/\sigma_{ci} + s)^{a-1}$$
 (10)

3. MODULUS OF DEFORMATION

The rock mass modulus of deformation is given by:

$$E_m(GPa) = \left(1 - \frac{D}{2}\right)\sqrt{\frac{\sigma_{ci}}{100}} \cdot 10^{((GSI - 10)/40)}$$
 (11a)

Equation 11a applies for $\sigma_{ci} \leq 100$ MPa. For $\sigma_{ci} > 100$ MPa, use equation 11b.

$$E_m(GPa) = \left(1 - \frac{D}{2}\right) \cdot 10^{((GSI-10)/40)}$$
 (11b)

Note that the original equation proposed by Hoek and Brown [14] has been modified, by the inclusion of the factor D, to allow for the effects of blast damage and stress relaxation.

4. MOHR-COULOMB CRITERION

Since most geotechnical software is still written in terms of the Mohr-Coulomb failure criterion, it is necessary to determine equivalent angles of friction and cohesive strengths for each rock mass and stress range. This is done by fitting an average linear relationship to the curve generated by solving equation 2 for a range of minor principal stress values defined by $\sigma_t < \sigma_3 < \sigma_{_{3max}}$, as illustrated in Figure 1. The fitting process involves balancing the areas above and below the Mohr-Coulomb plot. This results in the following equations for the angle of friction ϕ and cohesive strength c:

$$\phi' = \sin^{-1} \left[\frac{6am_b (s + m_b \sigma'_{3n})^{a-1}}{2(1+a)(2+a) + 6am_b (s + m_b \sigma'_{3n})^{a-1}} \right]$$
(12)

$$c' = \frac{\sigma_{ci} \left[(1+2a)s + (1-a)m_b \sigma_{3n} \right] \left(s + m_b \sigma_{3n} \right)^{a-1}}{(1+a)(2+a)\sqrt{1 + \left(6am_b \left(s + m_b \sigma_{3n} \right)^{a-1} \right) / \left((1+a)(2+a) \right)}}$$

where $\sigma_{3n} = \sigma'_{3 \text{max}} / \sigma_{ci}$

Note that the value of $\sigma_{_{3\max}}$, the upper limit of confining stress over which the relationship between the Hoek-Brown and the Mohr-Coulomb criteria is considered, has to be determined for each individual case. Guidelines for selecting these values for slopes as well as shallow and deep tunnels are presented later.

The Mohr-Coulomb shear strength τ , for a given normal stress σ , is found by substitution of these values of c and ϕ in to the equation:

$$\tau = c' + \sigma \tan \phi' \tag{14}$$

The equivalent plot, in terms of the major and minor principal stresses, is defined by:

$$\sigma_{1}^{'} = \frac{2c^{'}\cos\phi^{'}}{1-\sin\phi^{'}} + \frac{1+\sin\phi^{'}}{1-\sin\phi^{'}}\sigma_{3}^{'}$$
 (15)

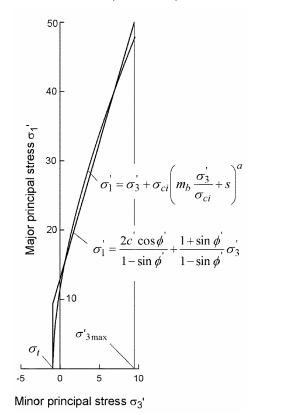


Figure 1: Relationships between major and minor principal stresses for Hoek-Brown and equivalent Mohr-Coulomb criteria.

5. ROCK MASS STRENGTH

The uniaxial compressive strength of the rock mass σ_c is given by equation 6. Failure initiates at the boundary of an excavation when σ_c is exceeded by the stress induced on that boundary. The failure propagates from this initiation point into a biaxial stress field and it eventually stabilizes when the local strength, defined by equation 2, is higher than the induced stresses σ_1 and σ_3 . Most numerical models can follow this process of fracture propagation and this level of detailed analysis is very important when considering the stability of excavations in rock and when designing support systems.

However, there are times when it is useful to consider the overall behaviour of a rock mass rather than the detailed failure propagation process described above. For example, when considering the strength of a pillar, it is useful to have an estimate of the overall strength of the pillar rather than a detailed knowledge of the extent of fracture propagation in the pillar. This leads to the concept of a global "rock mass strength" and Hoek and Brown [14] proposed that this could be estimated from the Mohr-Coulomb relationship:

$$\sigma'_{cm} = \frac{2c'\cos\phi'}{1-\sin\phi'} \tag{16}$$

with c' and ϕ' determined for the stress range $\sigma_t < \sigma_3' < \sigma_{ci} / 4$ giving

$$\sigma'_{cm} = \sigma_{ci} \cdot \frac{(m_b + 4s - a(m_b - 8s))(m_b/4 + s)^{a-1}}{2(1+a)(2+a)}$$
(17)

6. DETERMINATION OF σ'_{3MAX}

The issue of determining the appropriate value of $\sigma_{3\text{max}}$ for use in equations 12 and 13 depends upon the specific application. Two cases will be investigated:

- 1. Tunnels where the value of $\sigma'_{3\text{max}}$ is that which gives equivalent characteristic curves for the two failure criteria for deep tunnels or equivalent subsidence profiles for shallow tunnels
- 2. Slopes here the calculated factor of safety and the shape and location of the failure surface have to be equivalent.

For the case of deep tunnels, closed form solutions for both the Generalized Hoek-Brown and the Mohr-Coulomb criteria have been used to generate hundreds of solutions and to find the value of $\sigma_{3\,\text{max}}^{'}$ that gives equivalent characteristic curves.

For shallow tunnels, where the depth below surface is less than 3 tunnel diameters, comparative numerical studies of the extent of failure and the magnitude of surface subsidence gave an identical relationship to that obtained for deep tunnels, provided that caving to surface is avoided.

The results of the studies for deep tunnels are plotted in Figure 2 and the fitted equation for both cases is:

$$\frac{\sigma'_{3\text{max}}}{\sigma'_{cm}} = 0.47 \left(\frac{\sigma'_{cm}}{\gamma H}\right)^{-0.94} \tag{18}$$

where σ'_{cm} is the rock mass strength, defined by equation 17, γ is the unit weight of the rock mass

and H is the depth of the tunnel below surface. In cases where the horizontal stress is higher than the vertical stress, the horizontal stress value should be used in place of γH .

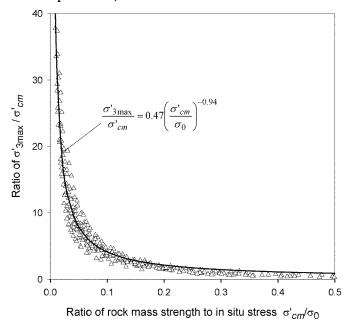


Figure 2: Relationship for the calculation of σ'_{3max} for equivalent Mohr-Coulomb and Hoek-Brown parameters for tunnels.

Equation 18 applies to all underground excavations, which are surrounded by a zone of failure that does not extend to surface. For studies of problems such as block caving in mines it is recommended that no attempt should be made to relate the Hoek-Brown and Mohr-Coulomb parameters and that the determination of material properties and subsequent analysis should be based on only one of these criteria.

Similar studies for slopes, using Bishop's circular failure analysis for a wide range of slope geometries and rock mass properties, gave:

$$\frac{\sigma_{3\,\text{max}}^{'}}{\sigma_{cm}^{'}} = 0.72 \left(\frac{\sigma_{cm}^{'}}{\gamma H}\right)^{-0.91} \tag{19}$$

where H is the height of the slope.

7. ESTIMATION OF DISTURBANCE FACTOR D

Experience in the design of slopes in very large open pit mines has shown that the Hoek-Brown criterion for undisturbed in situ rock masses (D=0) results in rock mass properties that are too optimistic [21, 22]. The effects of heavy blast

damage as well as stress relief due to removal of the overburden result in disturbance of the rock mass. It is considered that the "disturbed" rock mass properties [6], D = 1 in equations 3 and 4, are more appropriate for these rock masses.

Lorig and Varona [23] showed that factors such as the lateral confinement produced by different radii of curvature of slopes (in plan) as compared with their height also have an influence on the degree of disturbance.

Sonmez and Ulusay [24] back-analysed five slope failures in open pit coal mines in Turkey and attempted to assign disturbance factors to each rock mass based upon their assessment of the rock mass properties predicted by the Hoek-Brown criterion. Unfortunately, one of the slope failures appears to be structurally controlled while another consists of a transported waste pile. The authors consider that the Hoek-Brown criterion is not applicable to these two cases.

Cheng and Liu [25] report the results of very careful back analysis of deformation measurements, from extensometers placed before the commencement of excavation, in the Mingtan power cavern in Taiwan. It was found that a zone of blast damage extended for a distance of approximately 2 m around all large excavations. The back-calculated strength and deformation properties of the damaged rock mass give an equivalent disturbance factor D = 0.7.

From these references it is clear that a large number of factors can influence the degree of disturbance in the rock mass surrounding an excavation and that it may never be possible to quantify these factors precisely. However, based on their experience and on an analysis of all the details contained in these papers, the authors have attempted to draw up a set of guidelines for estimating the factor D and these are summarised in Table 1.

The influence of this disturbance factor can be large. This is illustrated by a typical example in which $\sigma_{ci} = 50$ MPa, $m_i = 10$ and GSI = 45. For an undisturbed in situ rock mass surrounding a tunnel at a depth of 100 m, with a disturbance factor D = 0, the equivalent friction angle is $\phi' = 47.16^{\circ}$ while the cohesive strength is c' = 0.58 MPa. A rock mass with the same basic parameters but in highly disturbed slope of 100 m height, with a disturbance factor of D = 1, has an equivalent friction angle of

 $\phi' = 27.61^{\circ}$ and a cohesive strength of c' = 0.35 MPa.

Note that these are guidelines only and the reader would be well advised to apply the values given with caution. However, they can be used to provide a realistic starting point for any design and, if the observed or measured performance of the excavation turns out to be better than predicted, the disturbance factors can be adjusted downwards.

8. CONCLUSION

A number of uncertainties and practical problems in using the Hoek-Brown failure criterion have been addressed in this paper. Wherever possible, an attempt has been made to provide a rigorous and unambiguous method for calculating or estimating the input parameters required for the analysis. These methods have all been implemented in a Windows program called "RocLab" that can be downloaded (free) from www.rocscience.com. This program includes tables and charts for estimating the uniaxial compressive strength of the intact rock elements (σ_{ci}), the material constant m_i and the Geological Strength Index (GSI).

9. ACKNOWLEDGEMENTS

The authors wish to acknowledge the contributions of Professor E.T. Brown in reviewing a draft of this paper and in participating in the development of the Hoek-Brown criterion for the past 25 years.

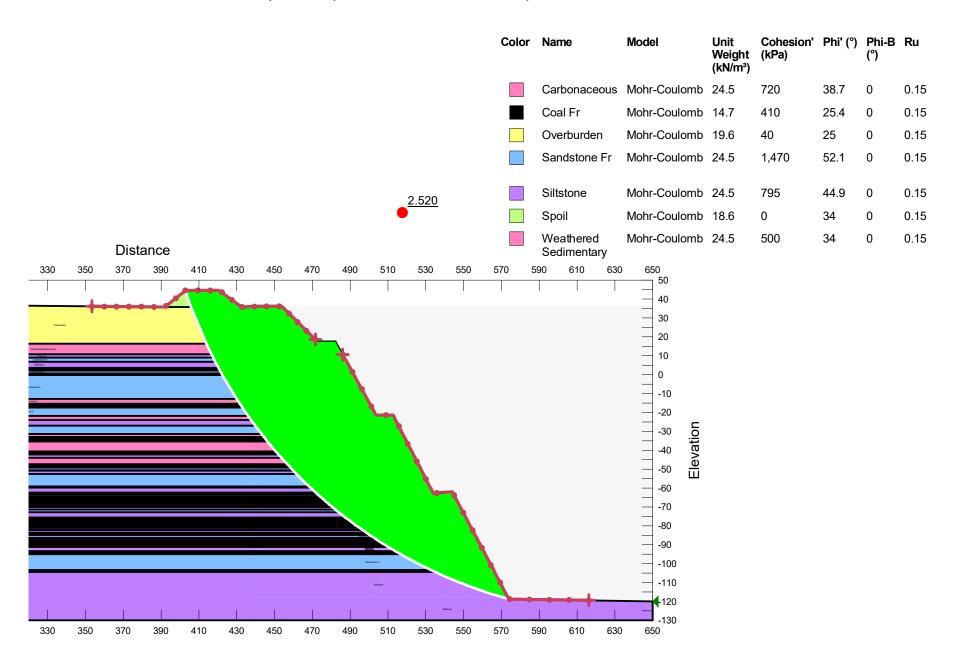
Table 1: Guidelines for estimating disturbance factor ${\cal D}$

Appearance of rock mass	Description of rock mass	Suggested value of <i>D</i>
	Excellent quality controlled blasting or excavation by Tunnel Boring Machine results in minimal disturbance to the confined rock mass surrounding a tunnel.	D = 0
	Mechanical or hand excavation in poor quality rock masses (no blasting) results in minimal disturbance to the surrounding rock mass. Where squeezing problems result in significant floor heave, disturbance can be severe unless a temporary invert, as shown in the photograph, is placed.	D = 0 $D = 0.5$ No invert
	Very poor quality blasting in a hard rock tunnel results in severe local damage, extending 2 or 3 m, in the surrounding rock mass.	D = 0.8
	Small scale blasting in civil engineering slopes results in modest rock mass damage, particularly if controlled blasting is used as shown on the left hand side of the photograph. However, stress relief results in some disturbance.	D = 0.7 Good blasting $D = 1.0$ Poor blasting
	Very large open pit mine slopes suffer significant disturbance due to heavy production blasting and also due to stress relief from overburden removal. In some softer rocks excavation can be carried out by ripping and dozing and the degree of damage to the slopes is less.	D = 1.0 Production blasting $D = 0.7$ Mechanical excavation

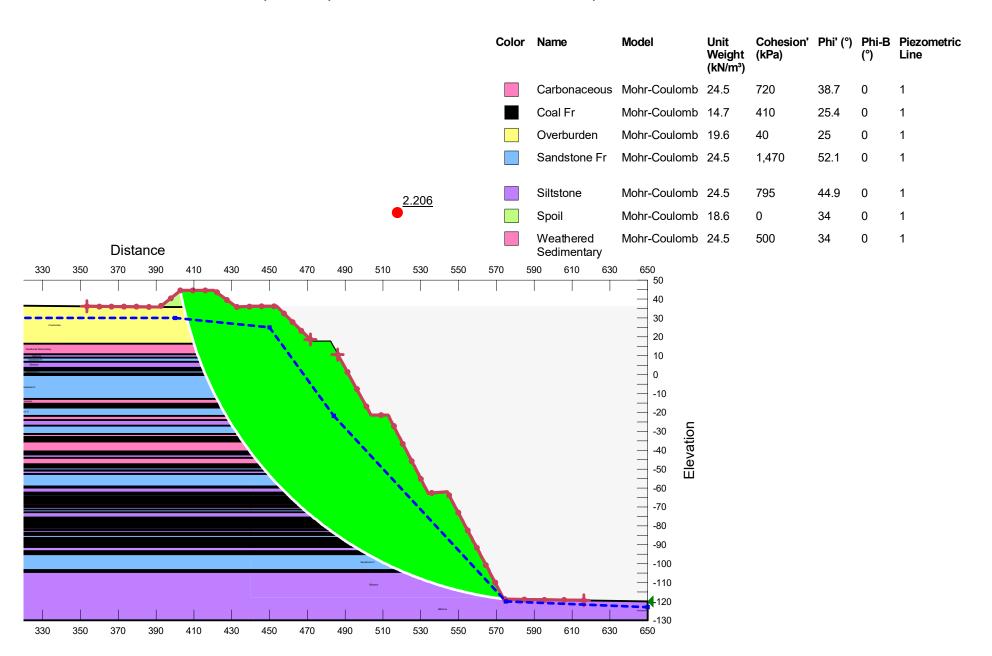
- 1. Hoek, E. and Brown, E.T. 1980. Empirical strength criterion for rock masses. J. Geotech. Engng Div., ASCE **106** (GT9), 1013-1035.
- 2. Hoek, E. and Brown, E.T. 1980. *Underground Excavations in Rock*, London, Instn Min. Metall.
- 3. Hoek, E. 1968. Brittle failure of rock. *In Rock Mechanics in Engineering Practice*. (eds K.G. Stagg and O.C. Zienkiewicz), 99-124. London: Wiley
- 4. Brown, E.T. 1970. Strength of models of rock with intermittent joints. *J. Soil Mech. Foundn Div., ASCE* **96**, SM6, 1935-1949.
- 5. Bieniawski Z.T. 1976. Rock mass classification in rock engineering. In *Exploration for Rock Engineering, Proc. of the Symp.*, (ed. Z.T. Bieniawski) 1, 97-106. Cape Town, Balkema.
- Hoek, E. and Brown, E.T. 1988. The Hoek-Brown failure criterion - a 1988 update. *Proc. 15th Canadian Rock Mech. Symp.* (ed. J.C. Curran), 31-38. Toronto, Dept. Civil Engineering, University of Toronto.
- 7. Hoek, E., Wood D. and Shah S. 1992. A modified Hoek-Brown criterion for jointed rock masses. *Proc. Rock Characterization, Symp. Int. Soc. Rock Mech.: Eurock '92*, (ed. J.A. Hudson), 209-214. London, Brit. Geotech. Soc.
- 8. Hoek, E. 1983. Strength of jointed rock masses, 23rd. Rankine Lecture. *Géotechnique* **33** (3), 187-223.
- 9. Ucar, R. (1986) Determination of shear failure envelope in rock masses. *J. Geotech. Engg. Div. ASCE.* **112**, (3), 303-315.
- 10. Londe, P. 1988. Discussion on the determination of the shear stress failure in rock masses. ASCE J Geotech Eng Div, 14, (3), 374-6.
- Carranza-Torres, C., and Fairhurst, C. 1999. General formulation of the elasto-plastic response of openings in rock using the Hoek-Brown failure criterion. *Int. J. Rock Mech. Min. Sci.*, 36 (6), 777-809.
- 12. Hoek, E. 1990. Estimating Mohr-Coulomb friction and cohesion values from the Hoek-Brown failure criterion. *Intnl. J. Rock Mech. & Mining Sci. & Geomechanics Abstracts.* **12** (3), 227-229.
- 13. Hoek, E. 1994. Strength of rock and rock masses, *ISRM News Journal*, **2** (2), 4-16.
- 14. Hoek, E. and Brown, E.T. 1997. Practical estimates of rock mass strength. *Intnl. J. Rock Mech. & Mining Sci. & Geomechanics Abstracts.* **34** (8), 1165-1186.
- 15. Hoek, E., Kaiser P.K. and Bawden W.F. 1995. Support of underground excavations in hard rock. Rotterdam, Balkema.
- Hoek, E., Marinos, P. and Benissi, M. 1998. Applicability of the Geological Strength Index (GSI) classification for very weak and sheared rock masses. The case of the Athens Schist Formation. *Bull. Engg. Geol. Env.* 57(2), 151-160.

- 17. Marinos, P and Hoek, E. 2000. GSI A geologically friendly tool for rock mass strength estimation. *Proc. GeoEng2000 Conference, Melbourne*.
- 18. Hoek, E. and Marinos, P. 2000. Predicting Tunnel Squeezing. *Tunnels and Tunnelling International*. Part 1 November 2000, Part 2 December, 2000
- 19. Marinos. P, and Hoek, E. 2001. Estimating the geotechnical properties of heterogeneous rock masses such as flysch. Accepted for publication in the *Bulletin of the International Association of Engineering Geologists*
- 20. Balmer, G. 1952. A general analytical solution for Mohr's envelope. *Am. Soc. Test. Mat.* 52, 1260-1271.
- Sjöberg, J., Sharp, J.C., and Malorey, D.J. 2001 Slope stability at Aznalcóllar. In *Slope stability in surface* mining. (eds. W.A. Hustrulid, M.J. McCarter and D.J.A. Van Zyl). Littleton: Society for Mining, Metallurgy and Exploration, Inc., 183-202.
- Pierce, M., Brandshaug, T., and Ward, M. 2001 Slope stability assessment at the Main Cresson Mine. In *Slope* stability in surface mining. (eds. W.A. Hustrulid, M.J. McCarter and D.J.A. Van Zyl). Littleton: Society for Mining, Metallurgy and Exploration, Inc., 239-250.
- 23. Lorig, L., and Varona, P. 2001 Practical slope-stability analysis using finite-difference codes. In *Slope stability in surface mining*. (eds. W.A. Hustrulid, M.J. McCarter and D.J.A. Van Zyl). Littleton: Society for Mining, Metallurgy and Exploration, Inc., 115-124.
- 24. Sonmez, H., and Ulusay, R. 1999. Modifications to the geological strength index (GSI) and their applicability to the stability of slopes. *Int. J. Rock Mech. Min. Sci.*, **36** (6), 743-760.
- 25. Cheng, Y., and Liu, S. 1990. Power caverns of the Mingtan Pumped Storage Project, Taiwan. In *Comprehensive Rock Engineering*. (ed. J.A. Hudson), Oxford: Pergamon, 5, 111-132.

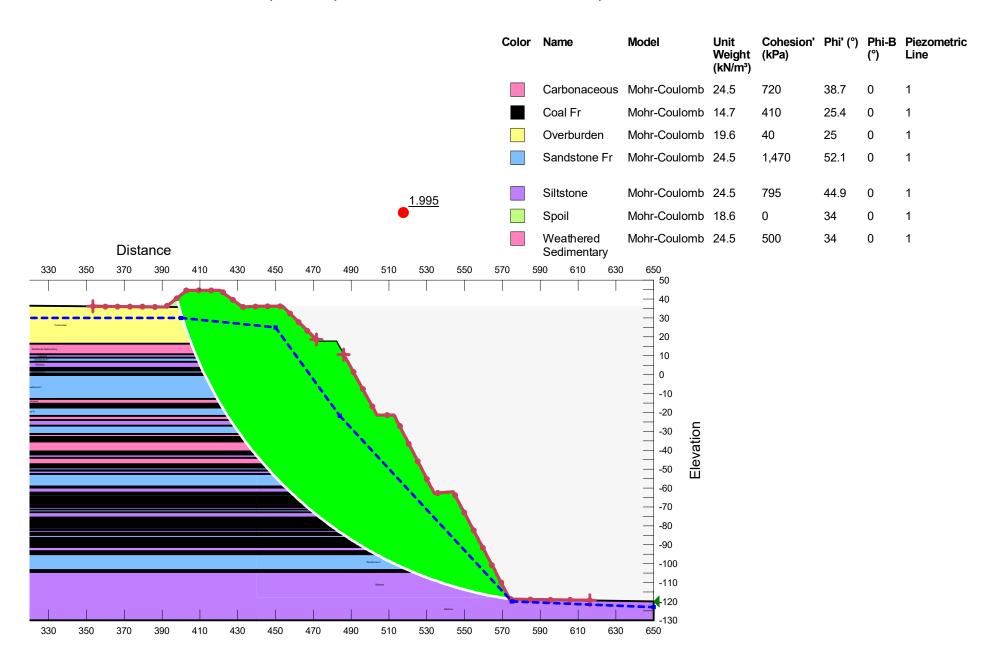
APPENDIX


G

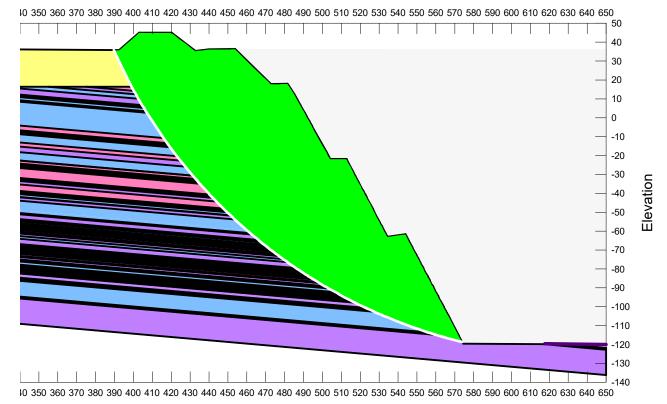
SLOPE STABILITY MODELLING


File Name: STX1903V6Mean Props.gsz

Kind: SLOPE/WMethod: {CurrentAnalysis.MetPWP Conditions from: Ruhod}Name: Cut2a

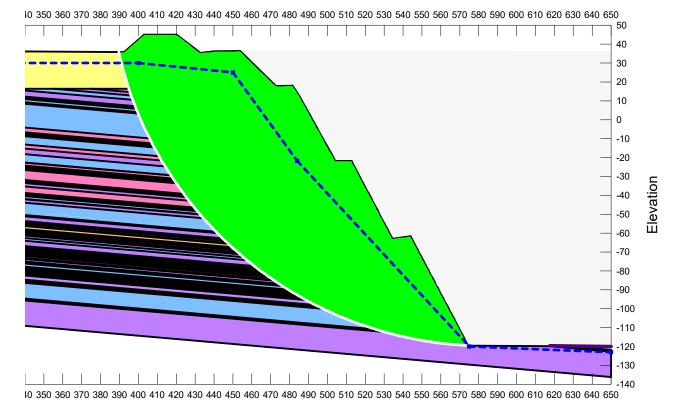

File Name: STX1903V6Mean Props.gsz

Kind: SLOPE/WMethod: {CurrentAnalysis.MetPWP Conditions from: Piezometric Linehod}Name: Cut2b

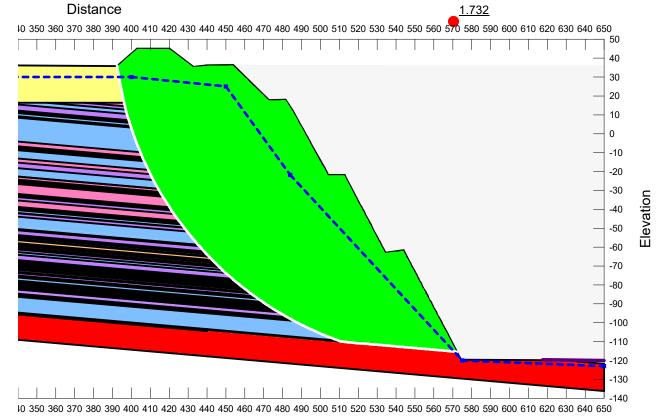


File Name: STX1903V6Mean Props.gsz

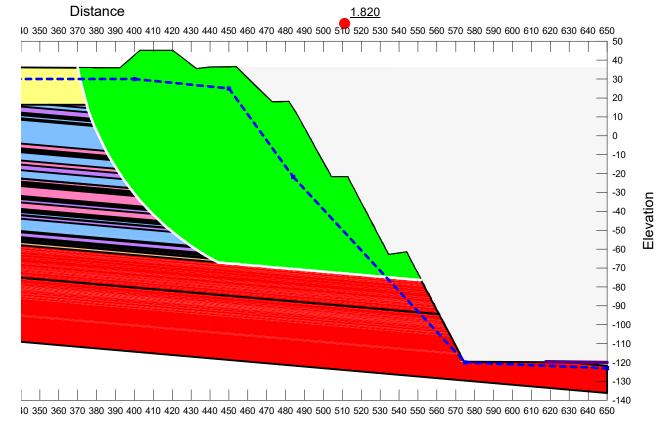
Kind: SLOPE/WMethod: {CurrentAnalysis.MetPWP Conditions from: Piezometric Linehod}Name: Cut2c Seis

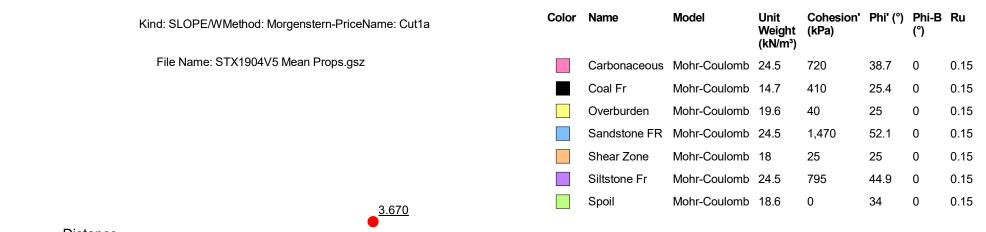


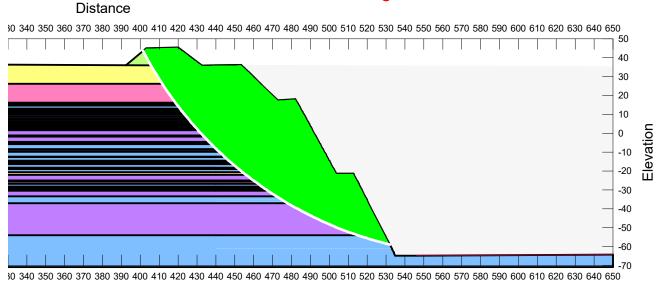
Method: {CurrentAnaly	rsis.MetName: Cut2ahod}Kind: SLOPE/W	Color	Name	Model	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	Phi-B (°)	Ru
File Name: STX1903\	/7MeanPropsPlanar.gsz		Carbonaceous	Mohr-Coulomb	24.5	720	38.7	0	0.15
			Coal Fr	Mohr-Coulomb	14.7	410	25.4	0	0.15
			Overburden	Mohr-Coulomb	19.6	40	25	0	0.15
			Sandstone Fr	Mohr-Coulomb	24.5	1,470	52.1	0	0.15
			Siltstone	Mohr-Coulomb	24.5	795	44.9	0	0.15
	2.631		Spoil	Mohr-Coulomb	18.6	0	34	0	0.15
	•		Weathered Sedimentary	Mohr-Coulomb	24.5	500	34	0	0.15

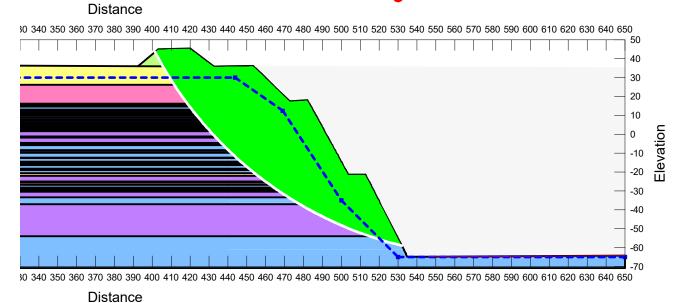


	Color	Name	Model	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	Phi-B (°)	Piezometric Line
Method: {CurrentAnalysis.MetName: Cut2bhod}Kind: SLOPE/W		Carbonaceous	Mohr-Coulomb	24.5	720	38.7	0	1
File Name: STX1903V7MeanPropsPlanar.gsz		Coal Fr	Mohr-Coulomb	14.7	410	25.4	0	1
		Overburden	Mohr-Coulomb	19.6	40	25	0	1
		Sandstone Fr	Mohr-Coulomb	24.5	1,470	52.1	0	1
		Shear Zone	Mohr-Coulomb	18	0	20	0	1
		Siltstone	Mohr-Coulomb	24.5	795	44.9	0	1
2.294		Spoil	Mohr-Coulomb	18.6	0	34	0	1
		Weathered Sedimentary	Mohr-Coulomb	24.5	500	34	0	1

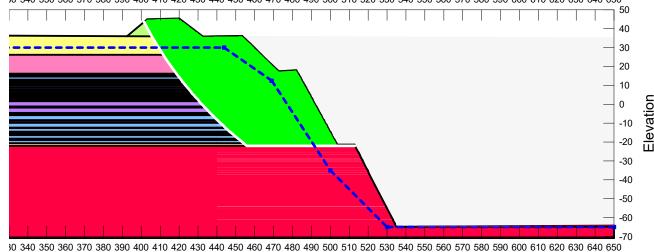




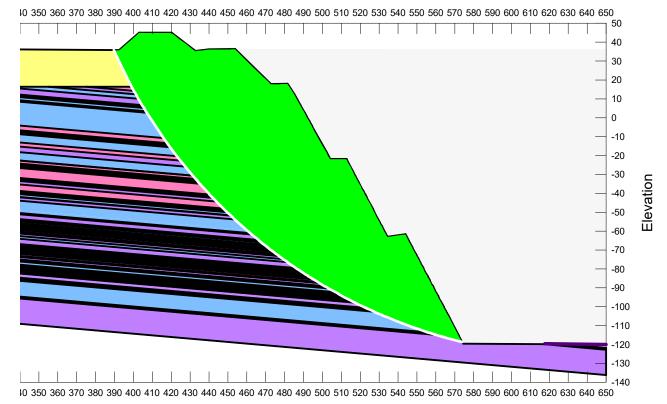

	CUIUI	IVAILIE	IVIOUEI	Weight (kN/m³)	(kPa)	(°)	(°)	Line
		Carbonaceous	Mohr-Coulomb	24.5	720	38.7	0	1
Method: {CurrentAnalysis.MetName: Cut2c shear zonehod}Kind: SLOPE/W		Coal Fr	Mohr-Coulomb	14.7	410	25.4	0	1
File Name: STX1903V7MeanPropsPlanar.gsz		Impenetrable	Bedrock (Impenetrable)					
		Overburden	Mohr-Coulomb	19.6	40	25	0	1
		Sandstone Fr	Mohr-Coulomb	24.5	1,470	52.1	0	1
		Shear Zone	Mohr-Coulomb	18	0	20	0	1
		Siltstone	Mohr-Coulomb	24.5	795	44.9	0	1
		Spoil	Mohr-Coulomb	18.6	0	34	0	1
		Weathered Sedimentary	Mohr-Coulomb	24.5	500	34	0	1


	CUIUI	IVAILIE	IVIOUEI	Weight (kN/m³)	(kPa)	(°)	(°)	Line
		Carbonaceous	Mohr-Coulomb	24.5	720	38.7	0	1
Method: {CurrentAnalysis.MetName: Cut2d Shear Zonehod}Kind: SLOPE/W File Name: STX1903V7MeanPropsPlanar.gsz		Coal Fr	Mohr-Coulomb	14.7	410	25.4	0	1
		Impenetrable	Bedrock (Impenetrable)					1
		Overburden	Mohr-Coulomb	19.6	40	25	0	1
		Sandstone Fr	Mohr-Coulomb	24.5	1,470	52.1	0	1
		Shear Zone	Mohr-Coulomb	18	0	20	0	1
		Siltstone	Mohr-Coulomb	24.5	795	44.9	0	1
		Spoil	Mohr-Coulomb	18.6	0	34	0	1
		Weathered Sedimentary	Mohr-Coulomb	24.5	500	34	0	1

Kind: SLOPE/WMethod: Morgenstern-PriceName: Cut1b	Color	Name	Model	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	Phi-B (°)	Piezometric Line
File Name: STX1904V5 Mean Props.gsz		Carbonaceous	Mohr-Coulomb	24.5	720	38.7	0	1
		Coal Fr	Mohr-Coulomb	14.7	410	25.4	0	1
		Overburden	Mohr-Coulomb	19.6	40	25	0	1
		Sandstone FR	Mohr-Coulomb	24.5	1,470	52.1	0	1
		Shear Zone	Mohr-Coulomb	18	25	25	0	1
		Siltstone Fr	Mohr-Coulomb	24.5	795	44.9	0	1
3.407		Spoil	Mohr-Coulomb	18.6	0	34	0	1

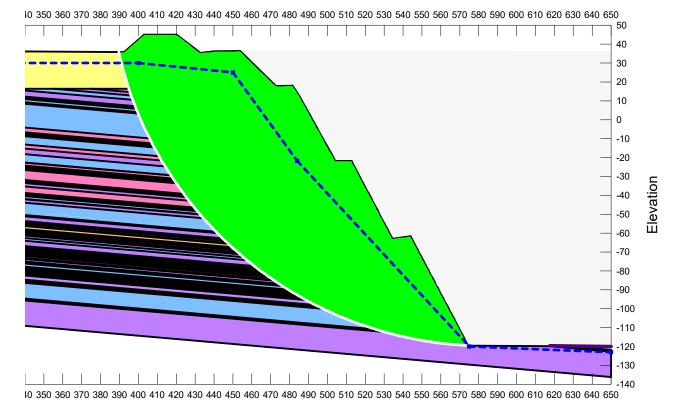


Kind: SLOPE/WMethod: Morgenstern-PriceName: Cut1c Planar


File Name: STX1904V5 Mean Props.gsz

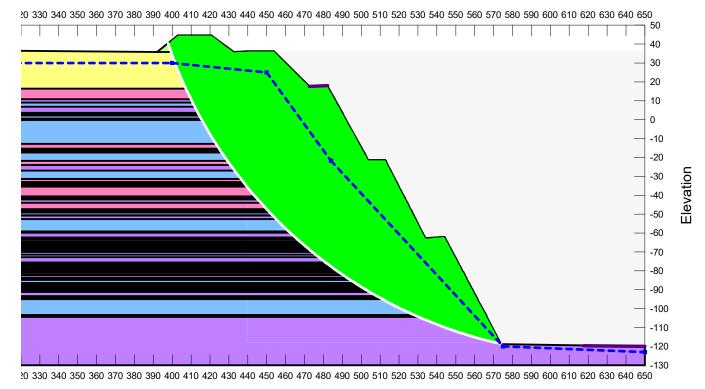
Color	Name	Model	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	Phi-B (°)	Piezometric Line
	Carbonaceous	Mohr-Coulomb	24.5	720	38.7	0	1
	Coal Fr	Mohr-Coulomb	14.7	410	25.4	0	1
	Impenetrable	Bedrock (Impenetrable)					1
	Overburden	Mohr-Coulomb	19.6	40	25	0	1
	Sandstone FR	Mohr-Coulomb	24.5	1,470	52.1	0	1
	Shear Zone	Mohr-Coulomb	18	25	25	0	1
	Siltstone Fr	Mohr-Coulomb	24.5	795	44.9	0	1
	Spoil	Mohr-Coulomb	18.6	0	34	0	1

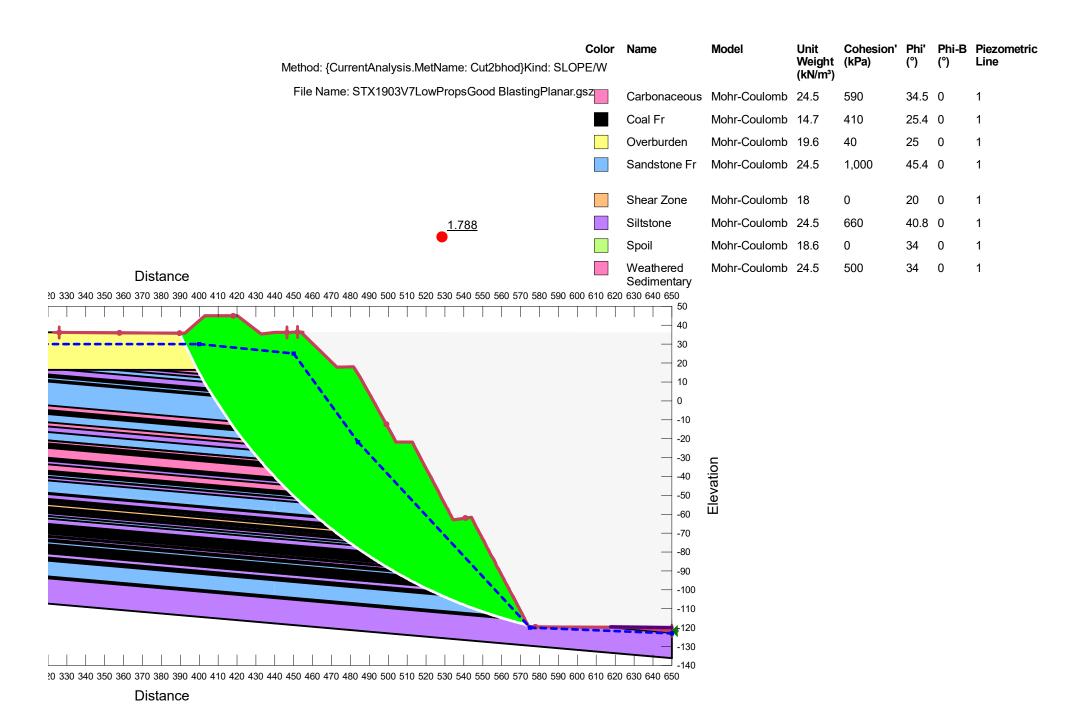
3.177
Distance
0 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600 610 6

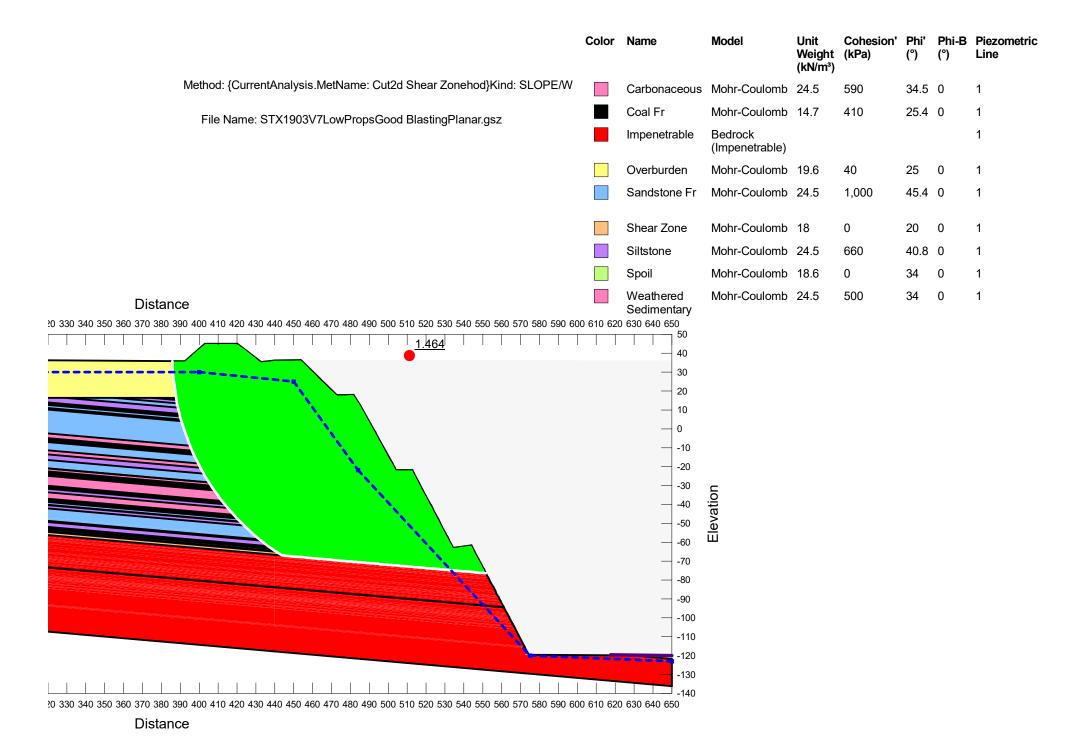


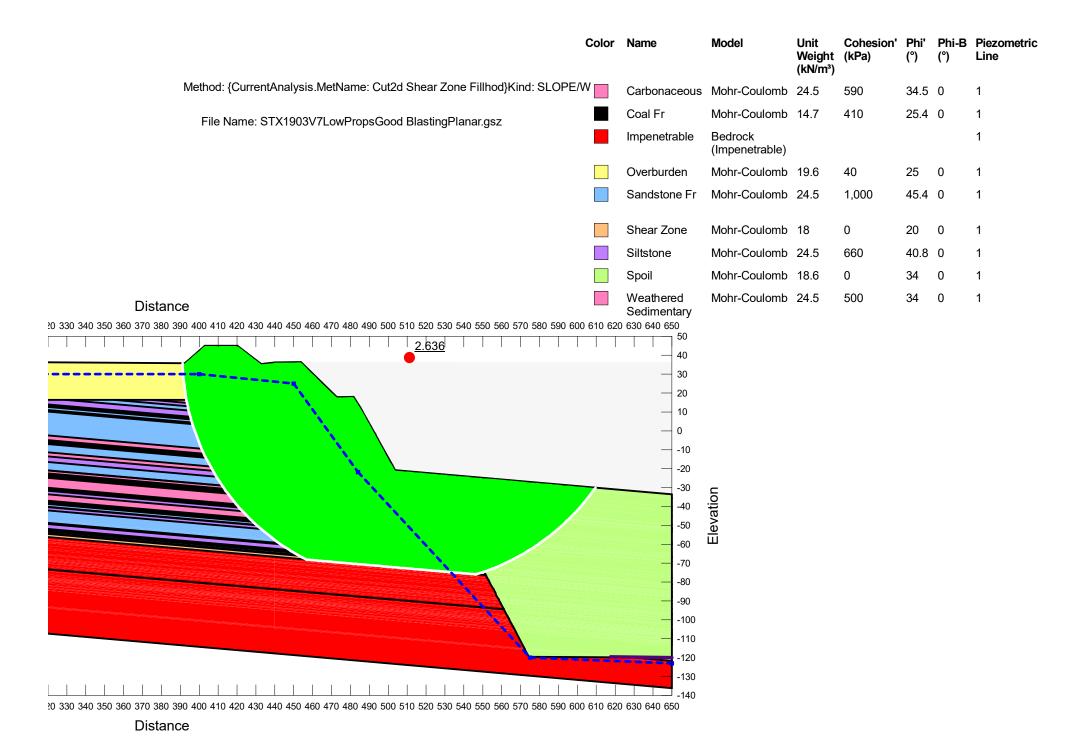
Method: {CurrentAnaly	rsis.MetName: Cut2ahod}Kind: SLOPE/W	Color	Name	Model	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	Phi-B (°)	Ru
File Name: STX1903\	/7MeanPropsPlanar.gsz		Carbonaceous	Mohr-Coulomb	24.5	720	38.7	0	0.15
			Coal Fr	Mohr-Coulomb	14.7	410	25.4	0	0.15
			Overburden	Mohr-Coulomb	19.6	40	25	0	0.15
			Sandstone Fr	Mohr-Coulomb	24.5	1,470	52.1	0	0.15
			Siltstone	Mohr-Coulomb	24.5	795	44.9	0	0.15
	2.631		Spoil	Mohr-Coulomb	18.6	0	34	0	0.15
	•		Weathered Sedimentary	Mohr-Coulomb	24.5	500	34	0	0.15

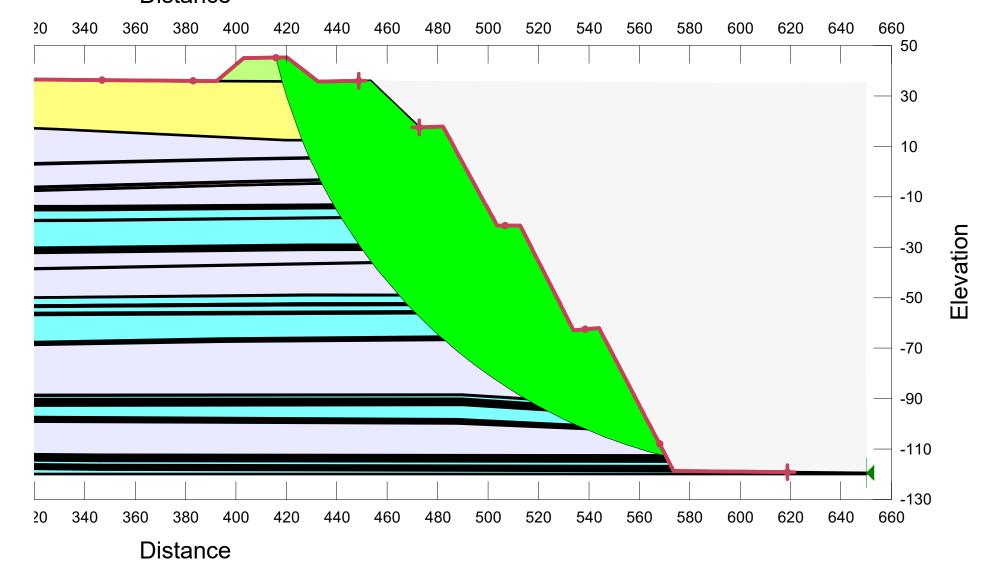
	Color	Name	Model	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	Phi-B (°)	Piezometric Line
Method: {CurrentAnalysis.MetName: Cut2bhod}Kind: SLOPE/W		Carbonaceous	Mohr-Coulomb	24.5	720	38.7	0	1
File Name: STX1903V7MeanPropsPlanar.gsz		Coal Fr	Mohr-Coulomb	14.7	410	25.4	0	1
		Overburden	Mohr-Coulomb	19.6	40	25	0	1
		Sandstone Fr	Mohr-Coulomb	24.5	1,470	52.1	0	1
		Shear Zone	Mohr-Coulomb	18	0	20	0	1
		Siltstone	Mohr-Coulomb	24.5	795	44.9	0	1
2.294		Spoil	Mohr-Coulomb	18.6	0	34	0	1
		Weathered Sedimentary	Mohr-Coulomb	24.5	500	34	0	1



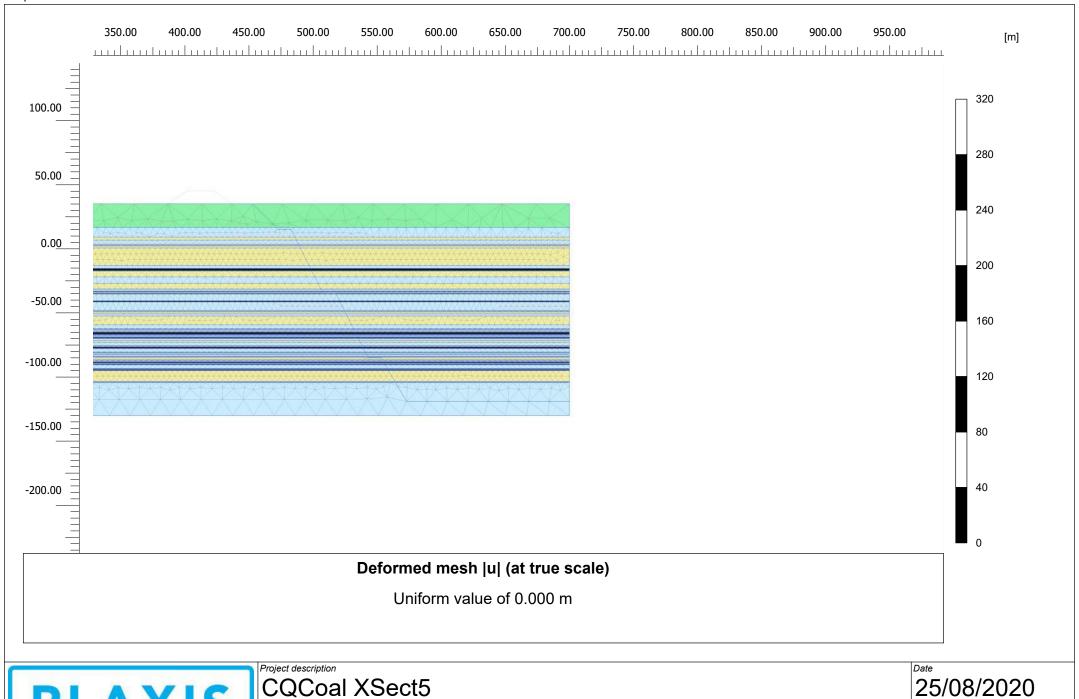

	Color	Name	Model	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	Phi-B (°)	Piezometric Line
Method: {CurrentAnalysis.MetName: Cut2c shear zonehod}Kind: SLOPE/W			Mohr-Coulomb		720	38.7		1
File Name: STX1903V7MeanPropsPlanar.gsz		Coal Fr	Mohr-Coulomb	14.7	410	25.4	0	1
The Name: 617(16664) Meant Topol Ianal.goz		Impenetrable	Bedrock (Impenetrable)					
		Overburden	Mohr-Coulomb	19.6	40	25	0	1
		Sandstone Fr	Mohr-Coulomb	24.5	1,470	52.1	0	1
		Shear Zone	Mohr-Coulomb	18	0	20	0	1
		Siltstone	Mohr-Coulomb	24.5	795	44.9	0	1
		Spoil	Mohr-Coulomb	18.6	0	34	0	1
Distance 1.732		Weathered Sedimentary	Mohr-Coulomb	24.5	500	34	0	1
10 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600 61		50 40 30 - 20 - 10 - 010203040 item708090100110120130140						


10 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600 610 620 630 640 650


		Color	Name	Model	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)		Piezometric Line
ŀ	Kind: SLOPE/WFile Name: STX1903V6Low PropsGoodBlasting.gszName: Cut2b		Carbonaceous	Mohr-Coulomb	24.5	590	34.5	0	1
			Coal Fr	Mohr-Coulomb	14.7	285	19.8	0	1
			Overburden	Mohr-Coulomb	19.6	40	25	0	1
			Sandstone Fr	Mohr-Coulomb	24.5	1,000	45.4	0	1
			Siltstone	Mohr-Coulomb	24.5	660	40.8	0	1
	1.733		Spoil	Mohr-Coulomb	18.6	0	34	0	1
			Weathered Sedimentary	Mohr-Coulomb	24.5	500	34	0	1



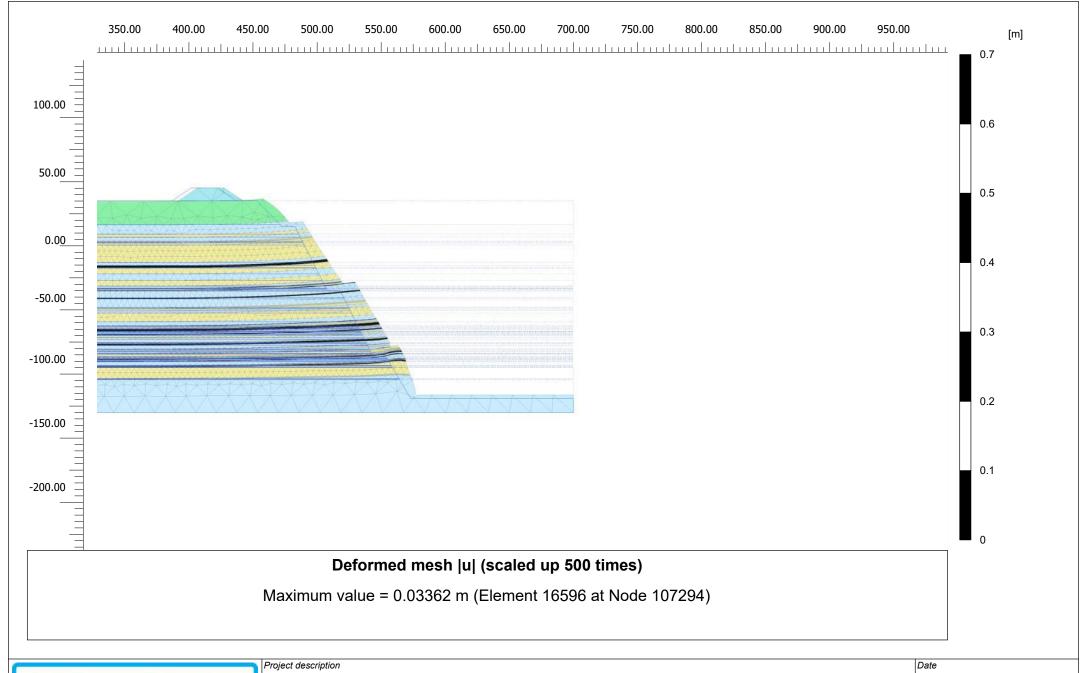
File Name: CQCoal Sect5d2020a.gsz	Color	Name	Model	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	Phi-B (°)	Ru
		Coal Fr	Mohr-Coulomb	14.7	285	19.9	0	0.15
Name: Slope Stability (3)		Combined Sandstone Siltstone Hi GSI	Mohr-Coulomb	24	1,000	46.45	0	0.15
		Combined Siltstone Carbonaceous	Mohr-Coulomb	24	845	42.3	0	0.15
		Mudstone Fr	Mohr-Coulomb	19.6	410	25.4	0	0.15
		Overburden	Mohr-Coulomb	19.6	40	25	0	0.15
		Spoil	Mohr-Coulomb	18.6	0	34	0	0.15

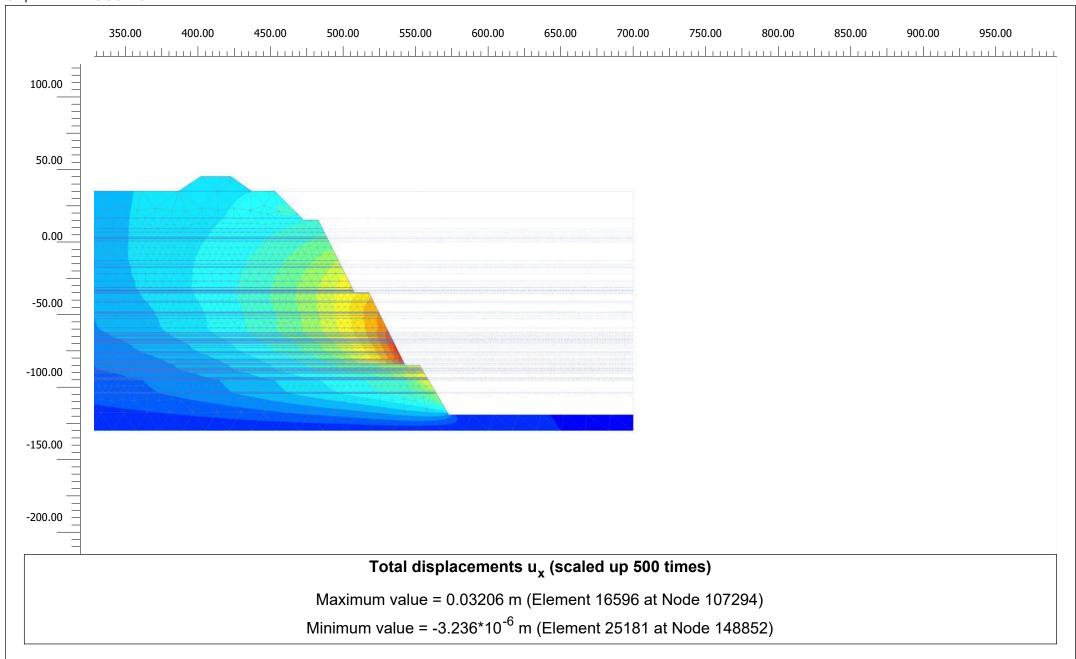


APPENDIX

Н

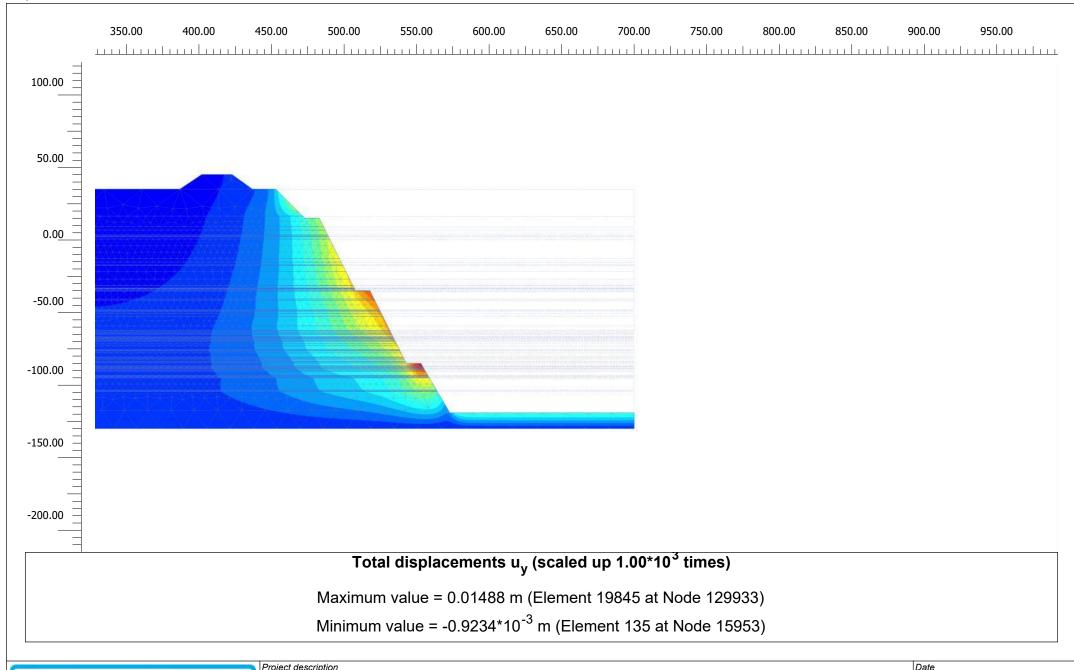
DEFORMATION MODELLING




Step

Cardno Pty Limited

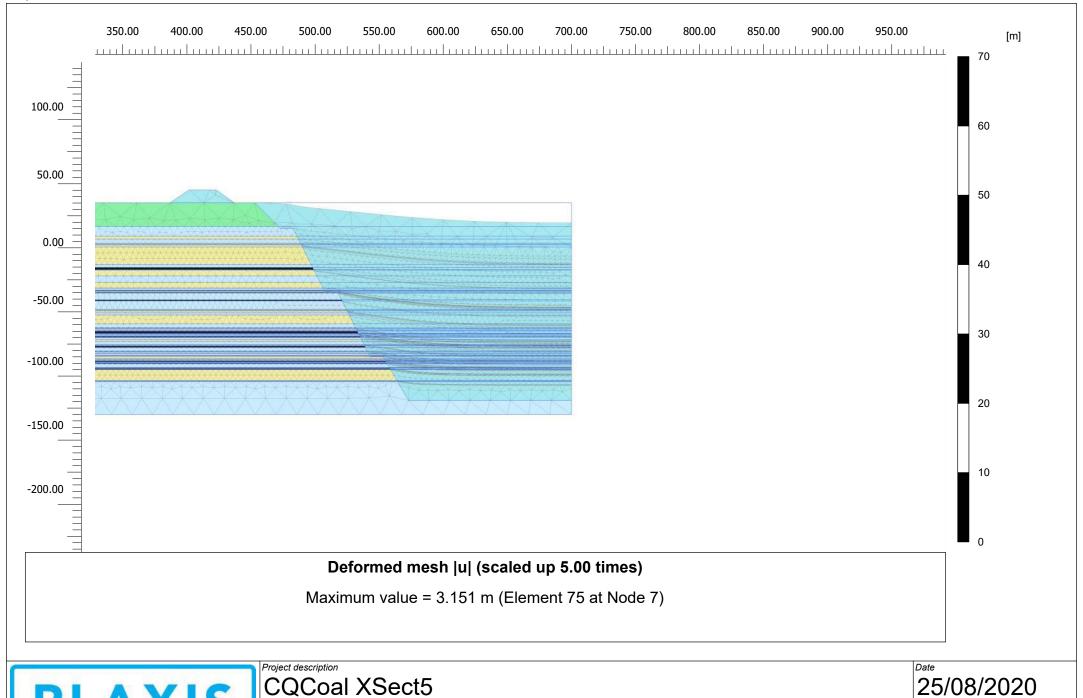
STX1903AV5biso



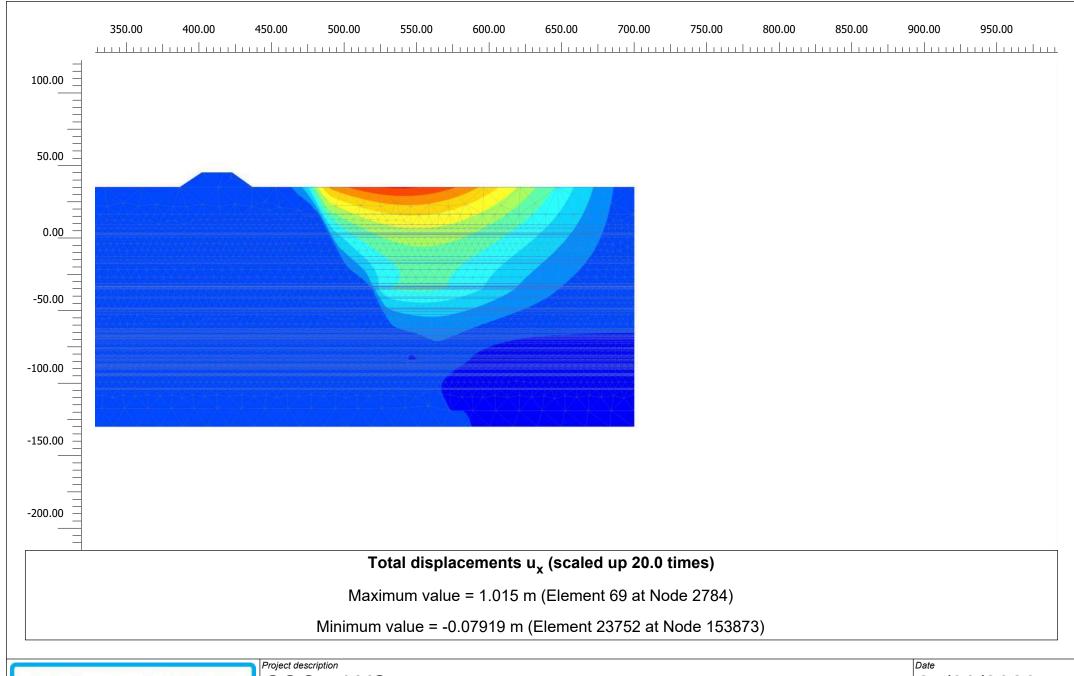
Step

68

Cardno Pty Limited

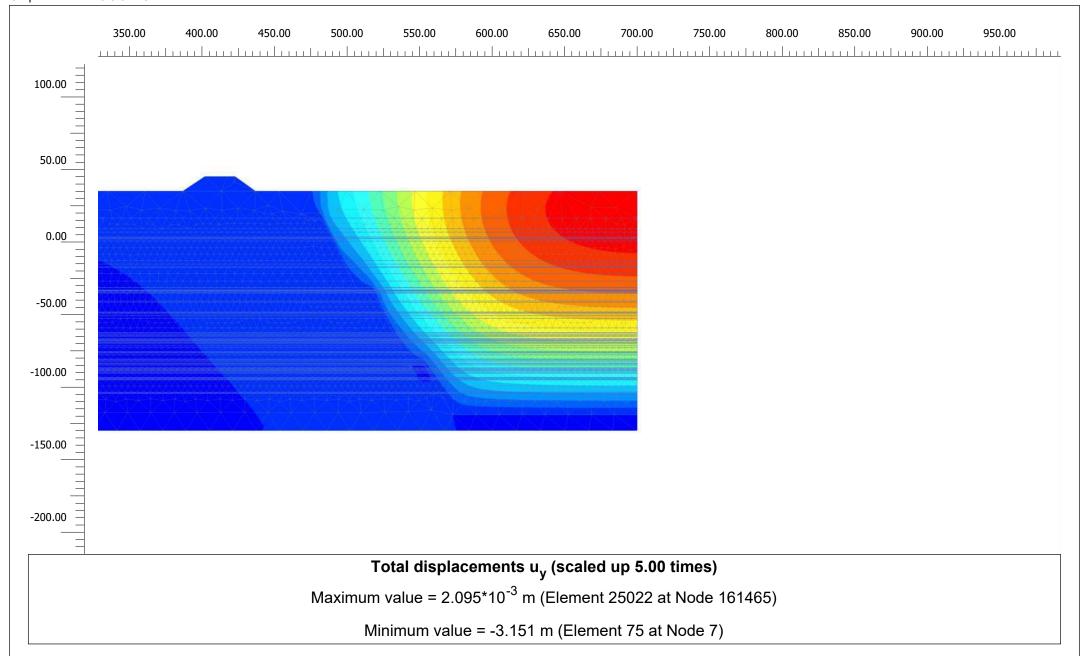


STX1903AV5biso


Step

68

Cardno Pty Limited

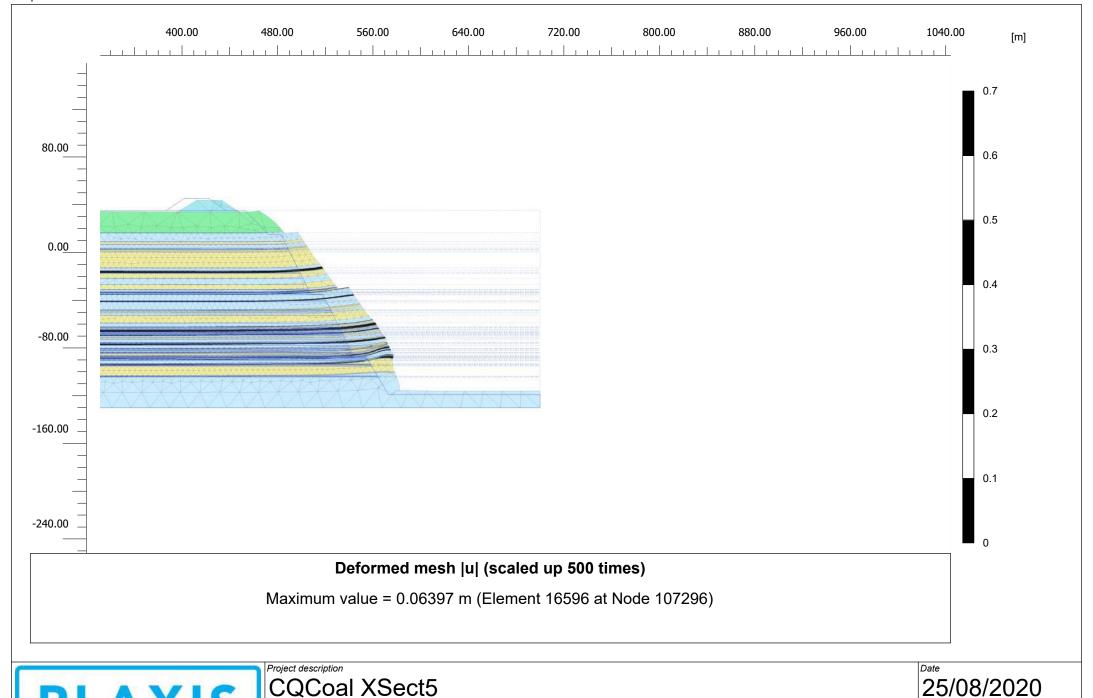

STX1903AV5biso

Step

Company

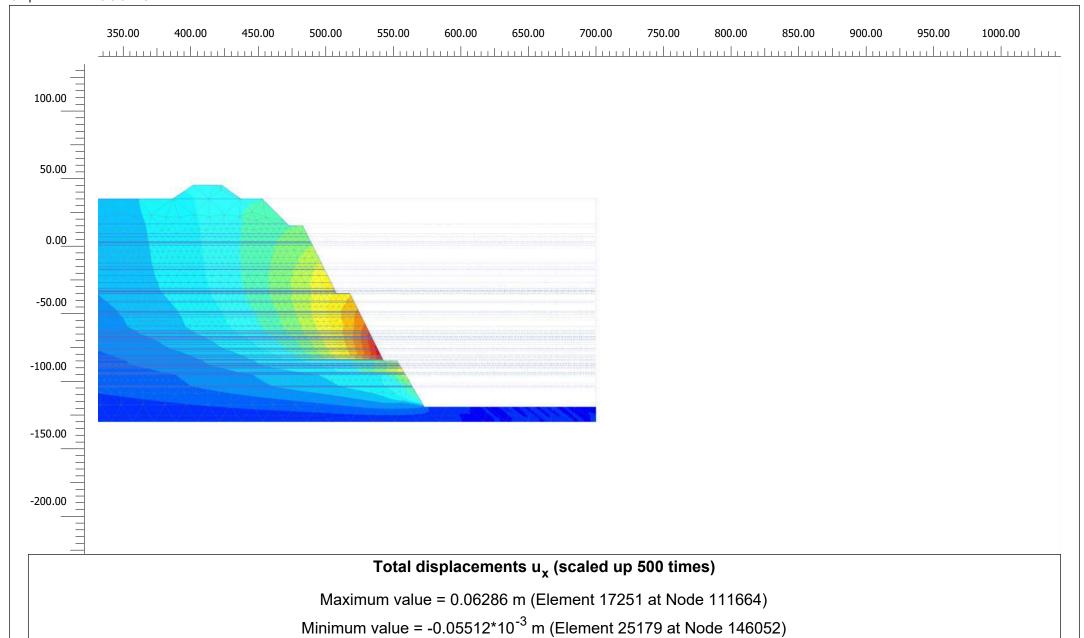
87

Cardno Pty Limited



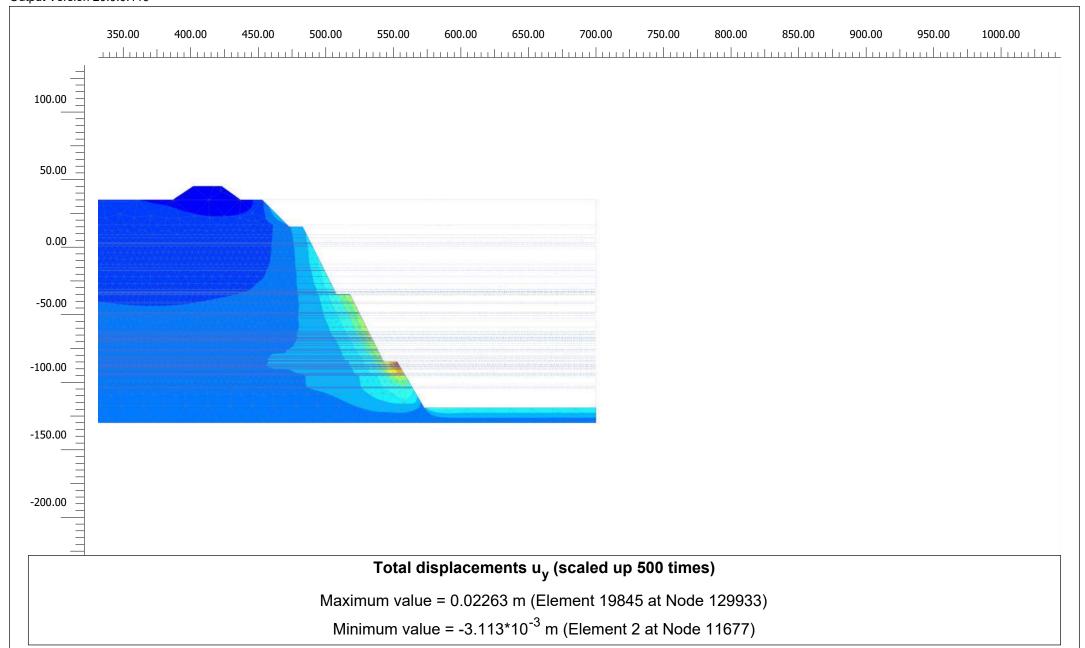
Step

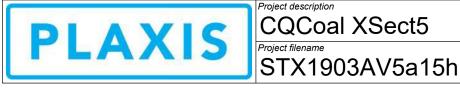
87


Cardno Pty Limited

Step

39

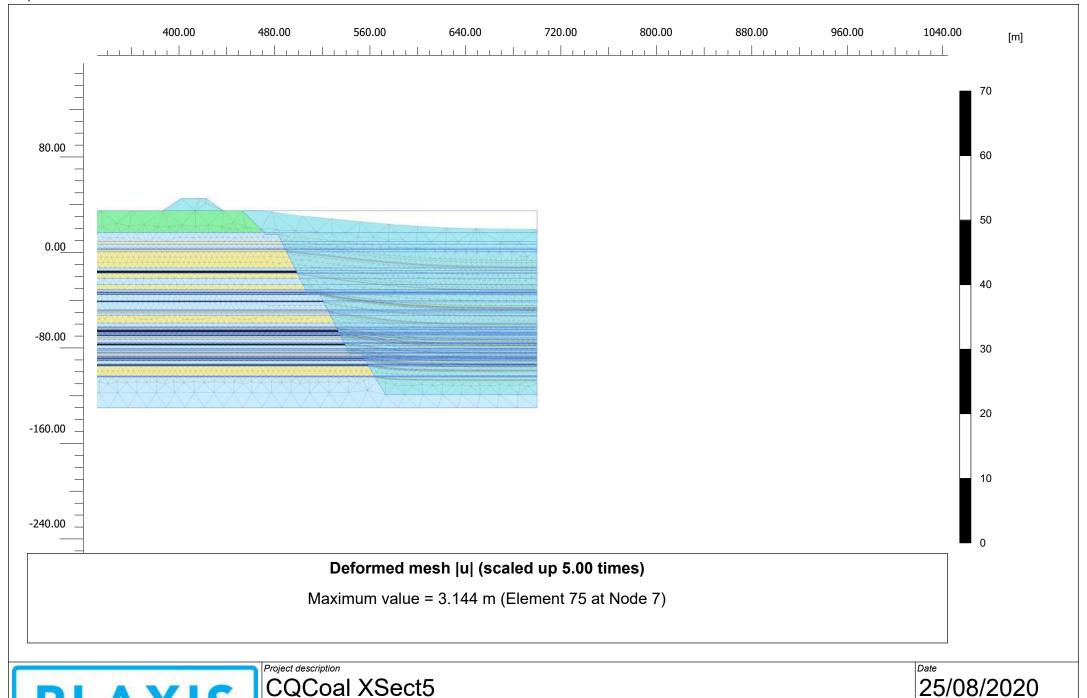




Step

Cardno Pty Limited

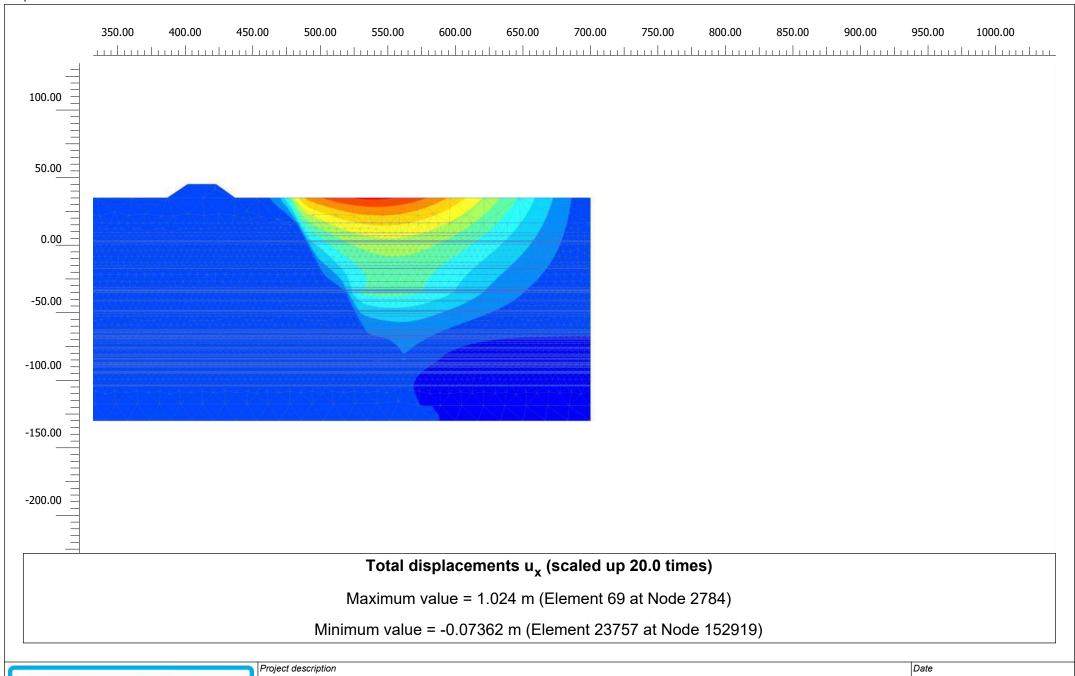
25/08/2020



Step

39

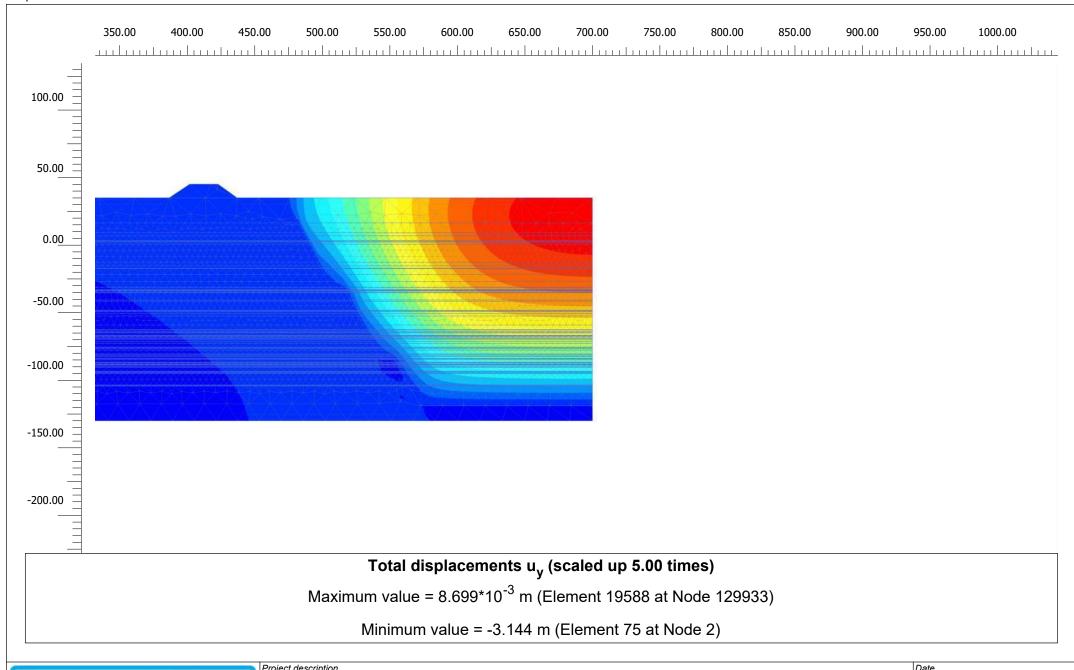
Cardno Pty Limited



Step

STX1903AV5a15h

48

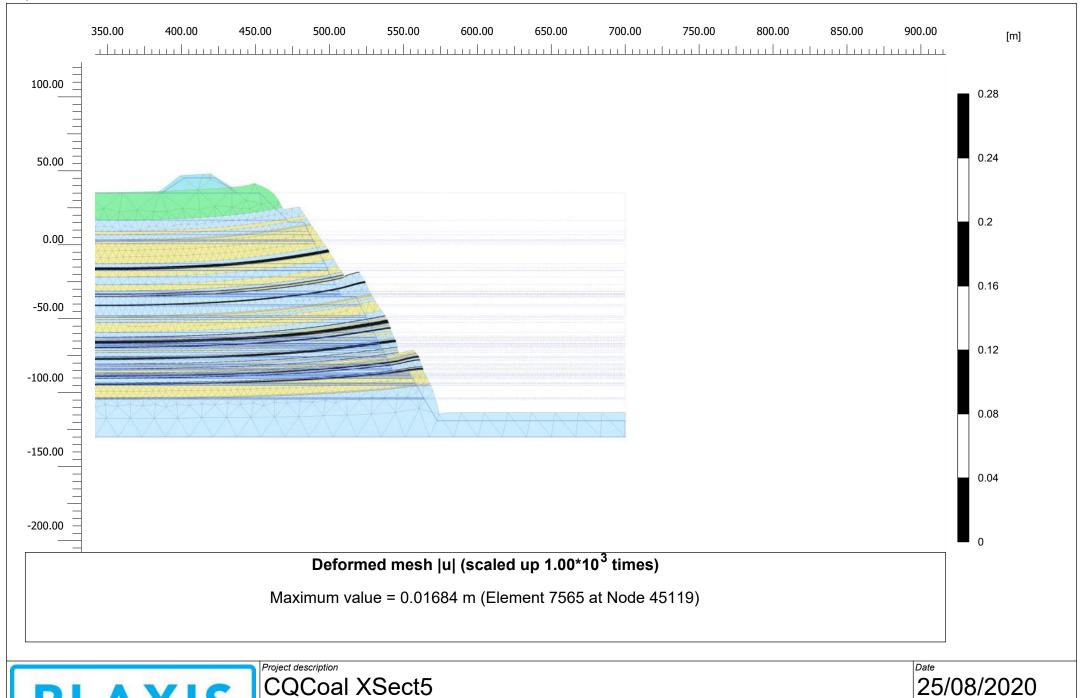

STX1903AV5a15h

Step

Company

48

Cardno Pty Limited

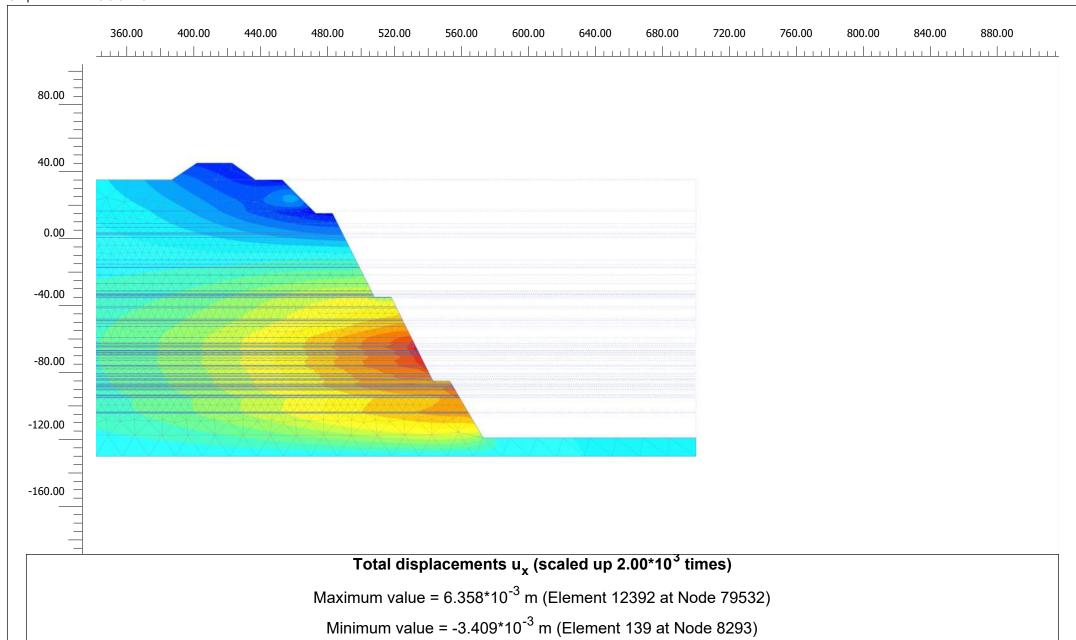

STX1903AV5a15h

Step

Company

48

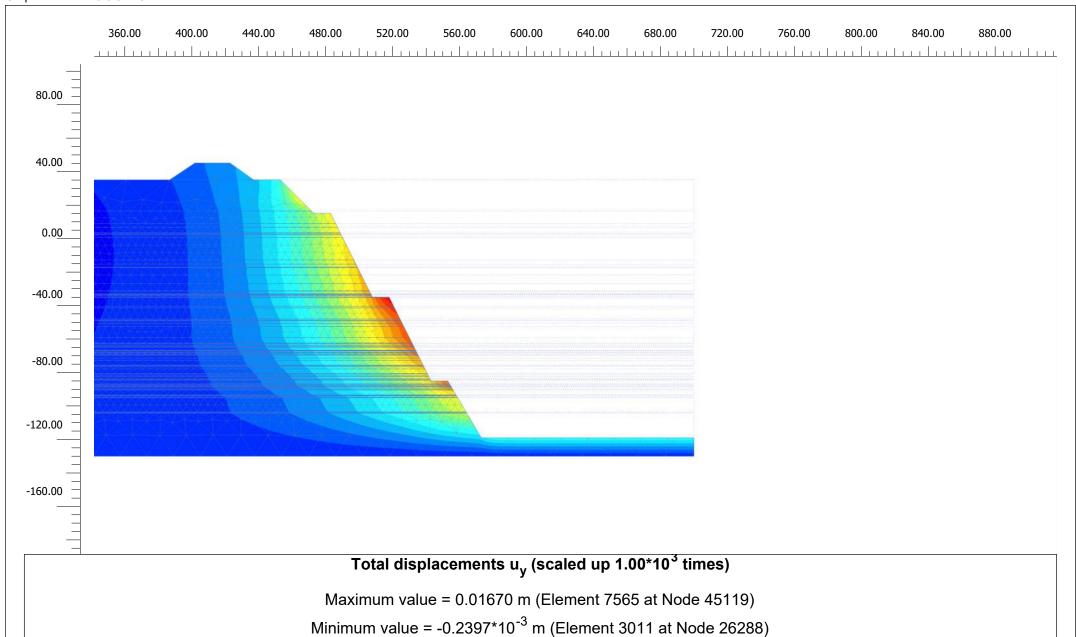
Cardno Pty Limited



Step

STX1903AV5cauto

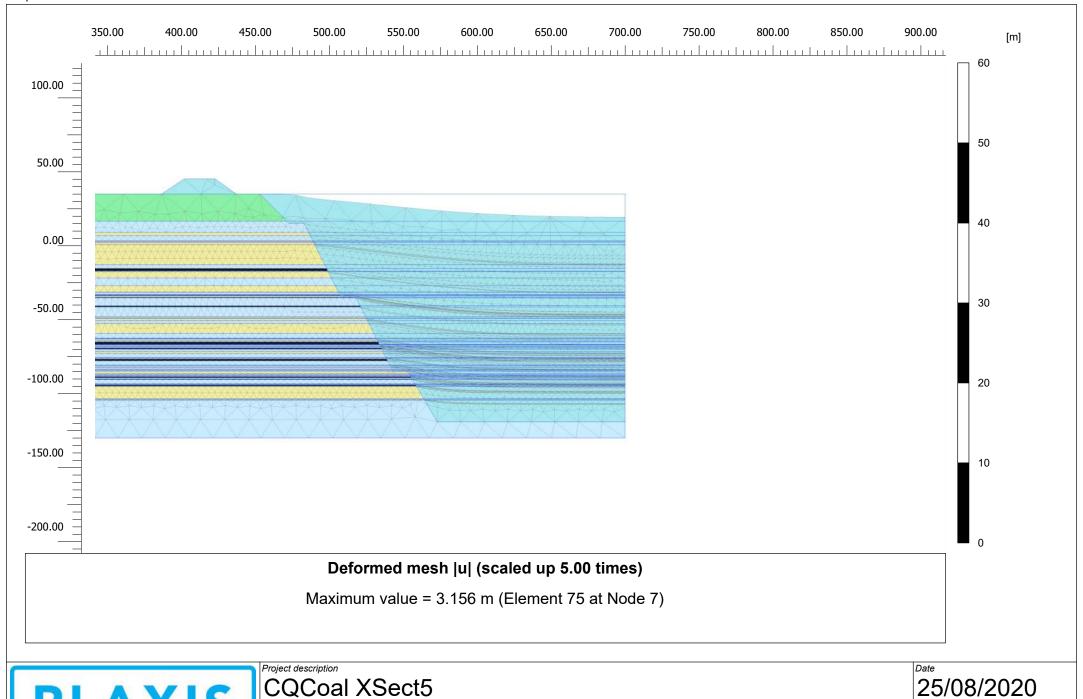
11



Step

Cardno Pty Limited

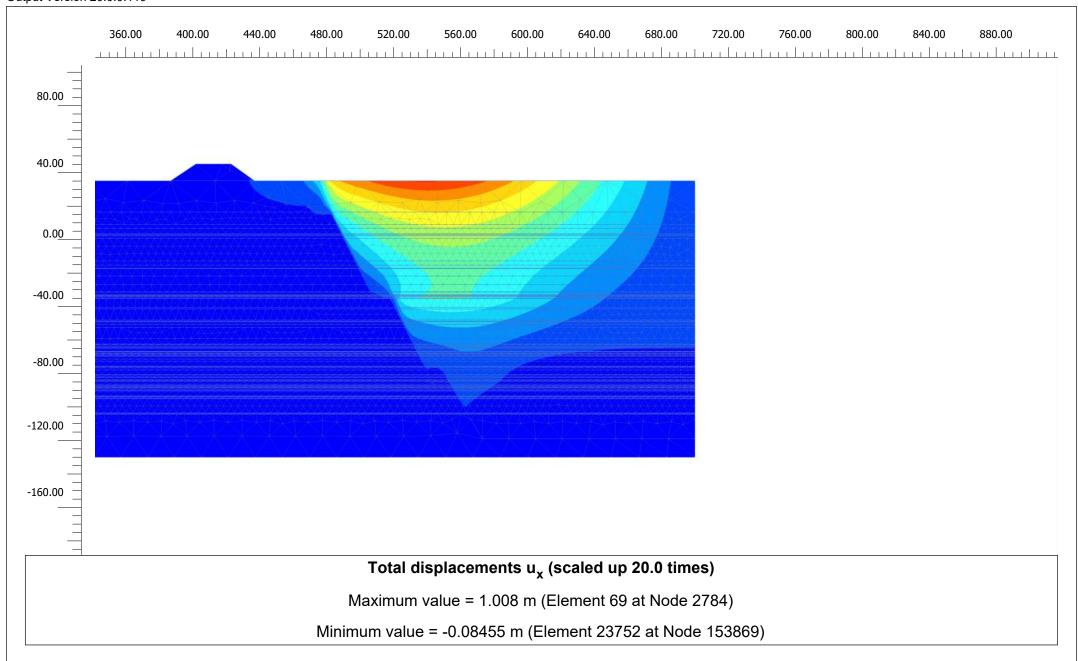
25/08/2020



Step

11

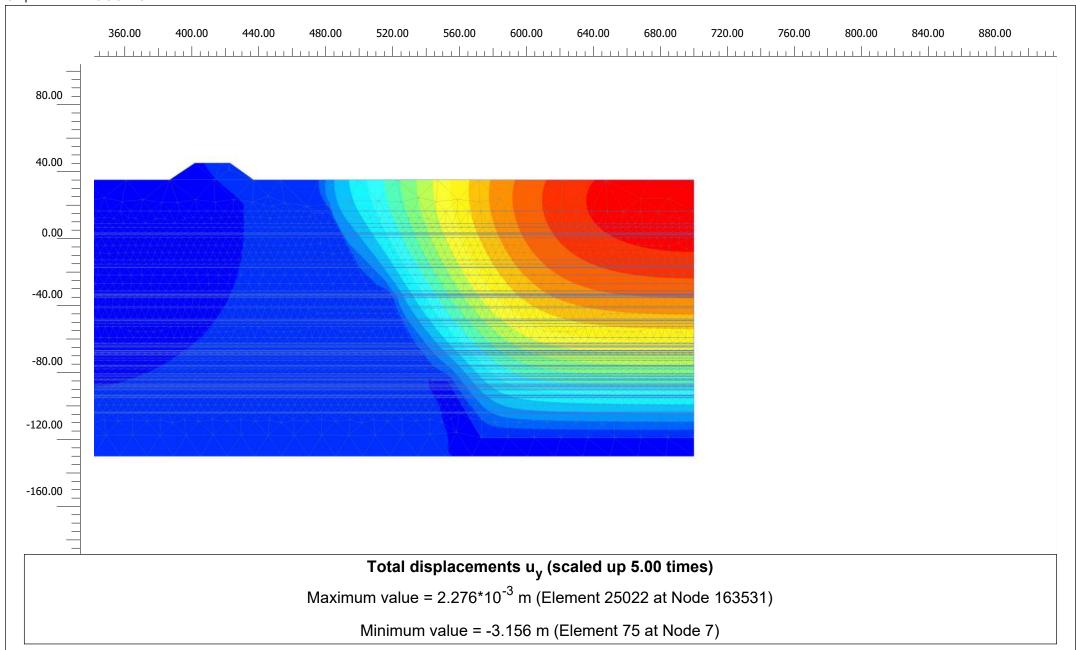
Cardno Pty Limited



Step

STX1903AV5cauto

56



Step

56

Cardno Pty Limited

Step

Cardno Pty Limited

25/08/2020